
UCRL-ID-117224
Revision 7.1

Testing Existing Software for Safety-
Related Applications

Revision 7.1

Prepared by
John A. Scott
J. Dennis Lawrence

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the University of
California and shall not be used for advertising or product endorsement purposes.

This work was supported by the United States Nuclear Regulatory commission under a Memorandum of
Understanding with the United States Department of Energy, and performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

UCRL-ID-117224
Revision 7.1

Testing Existing Software for Safety-
Related Applications

Revision 7.1

Prepared by
John A. Scott
J. Dennis Lawrence

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

ii

iii

ABSTRACT

The increasing use of commercial off-the-shelf (COTS) software products in digital safety-critical applications is
raising concerns about the safety, reliability, and quality of these products. One of the factors involved in addressing
these concerns is product testing. A tester’s knowledge of the software product will vary, depending on the
information available from the product vendor. In some cases, complete source listings, program structures, and
other information from the software development may be available. In other cases, only the complete
hardware/software package may exist, with the tester having no knowledge of the internal structure of the software.

The type of testing that can be used will depend on the information available to the tester. This report describes six
different types of testing, which differ in the information used to create the tests, the results that may be obtained,
and the limitations of the test types. An Annex contains background information on types of faults encountered in
testing, and a Glossary of pertinent terms is also included.

iv

v

CONTENTS

ACKNOWLEDGMENT ... ix

1. INTRODUCTION... 1
1.1. Purpose ..1
1.2. Scope, Assumptions and Limitations ..1
1.3. Report Organization ..1
1.4. Definitions... 2
1.5. General Comments on Testing ..2

1.5.1. Testing Goals and Software Qualities ... 2
1.5.2. Software Objects ... 2
1.5.3. Testers..5
1.5.4. The Testing Life Cycle ..5

1.6. Faults, Errors, Failures ..7
1.6.1 Definitions ..7
1.6.2 Relationship of Faults, Errors, and Failures ... 7

1.7. Selection of Testing Strategies and Techniques..8
1.7.1. Context for Selecting Testing Strategies ... 8
1.7.2. Considerations for Selecting Testing Strategies ..8

2. STATIC SOURCE CODE ANALYSIS..15
2.1. Purpose of Static Source Code Analysis ... 15
2.2. Benefits and Limitations of Static Source Code Analysis... 15

2.2.1. Benefits ..15
2.2.2. Limitations... 15

2.3. Information Required to Perform Static Source Code Analysis ... 16
2.4. Methods of Performing Static Source Code Analysis... 16

2.4.1. Static Analysis Planning and Requirements ..16
2.4.2. Analysis Design and Implementation..16
2.4.3. Execution and Evaluation of the Analyses ..17

2.5. Discussion of Static Source Code Analysis... 17
2.5.1. Inspection... 17
2.5.2. Desk Checking... 19
2.5.3. Automated Structural Analysis..20
2.5.4. Other Methods ... 20

3. STRUCTURAL TESTING ... 23
3.1. Purpose of Structural Testing ..23
3.2. Benefits and Limitations of Structural Testing ... 23

3.2.1. Benefits ..23
3.2.2. Limitations... 23

3.3. Information Required to Perform Structural Testing ..23
3.4. Methods of Performing Structural Testing..23

3.4.1. Test Planning and Test Requirements ... 23
3.4.2. Test Design and Test Implementation... 24
3.4.3. Test Execution and Test Evaluation ..24

3.5. Discussion of Structural Testing ... 25
3.5.1. Control Flowgraphs ... 25
3.5.2. Control Flow (Path) Testing ..26
3.5.3. Loop Testing..27
3.5.4. Data Flow Testing ... 27

vi

4. FUNCTIONAL TESTING ..31
4.1. Purpose of Functional Testing... 31
4.2. Benefits and Limitations of Functional Testing ..31

4.2.1. Benefits ..31
4.2.2. Limitations... 31

4.3. Information Required to Perform Functional Testing... 31
4.4. Methods of Performing Functional Testing ..31

4.4.1. Test Planning and Test Requirements ... 31
4.4.2. Test Design and Test Implementation... 32
4.4.3. Test Execution and Test Evaluation ..32

4.5. Discussion of Functional Testing ..33
4.5.1. Transaction Testing ... 33
4.5.2. Domain Testing ... 34
4.5.3. Syntax Testing ... 35
4.5.4. Logic-Based Testing..36
4.5.5. State Testing ..37

5. STATISTICAL TESTING ..39
5.1. Purpose of Statistical Testing ..39
5.2. Benefits and Limitations of Statistical Testing ... 39

5.2.1. Benefits ..39
5.2.2. Limitations... 39

5.3. Information Required to Perform Statistical Testing ..39
5.4. Methods of Performing Statistical Testing..40

5.4.1. Test Planning and Test Requirements ... 40
5.4.2. Test Design and Test Implementation... 40
1. Calculate the number of test cases which must be carried out without failure to achieve the specified

reliability with the specified confidence level. ..40
2. Obtain the operational profile.. 41
3. Determine the test oracle. ..42
4. Create the test station...42
5.4.3. Test Execution and Test Evaluation ..42

5.5. Discussion of Statistical Testing ... 42

6. STRESS TESTING ... 45
6.1. Purpose of Stress Testing ..45
6.2. Benefits and Limitations of Stress Testing ... 45

6.2.1. Benefits ..45
6.2.2. Limitations... 45

6.3. Information Required to Perform Stress Testing... 45
6.4. Methods of Performing Stress Testing ..46

6.4.1. Test Planning and Test Requirements ... 46
6.4.2. Test Design and Test Implementation... 46
1. Establish the testing environment for the stress tests. ... 46
2. Create procedures for executing the stress tests. ... 46
3. Create individual test cases.. 46
4. Create the test station...46
6.4.3. Test Execution and Test Evaluation ..47

6.5. Discussion of Stress Testing ... 48

vii

7. REGRESSION TESTING... 51
7.1. Purpose of Regression Testing ..51
7.2. Benefits and Limitations of Regression Testing ... 51

7.2.1. Benefits ..51
7.2.2. Limitations... 51

7.3. Information Required to Perform Regression Testing ..51
7.4. Methods of Performing Regression Testing..51

7.4.1. Test Planning and Test Requirements ... 51
7.4.2. Test Design and Test Implementation... 51
7.4.3. Test Execution and Test Evaluation ..52

7.5. Discussion of Regression Testing ... 52

8. REFERENCES ..53

ANNEX: TAXONOMY OF SOFTWARE BUGS ... 55

GLOSSARY... 65

TABLES

Table 1-1. Safety Impact of Software Qualities from a Regulator Viewpoint ..3
Table 1-2. Testing Strategies Appropriate to Software Qualities..4
Table 1-3. Test Strategies Appropriate for Software Objects ... 6
Table 1-4. Expected Pattern of Testers and Software Objects ..6
Table 1-5. Strategies Used by Testers ... 6
Table 1-6. Sample Prerequisites for and Extent of Testing... 9
Table 1-7. Typical Testing Strategies for Investigating Software Qualities ... 11
Table 3-1. Data Flow Testing Symbols and Meanings ... 29
Table 5-1. Required Number of Test Cases to Achieve Stated Levels of Failure Rate and Confidence41
Table 5-2. Expected Test Duration as a Function of Test Case Duration ... 41

FIGURES

Figure 2-1. Conceptual Platform for Automated Static Analysis..18
Figure 2-2. Software Development Activities, Products, and Inspections ..19
Figure 3-1. Typical Test Station Components for Structural Testing ... 25
Figure 3-2. Example of a Program ..26
Figure 3-3. Flowgraph Corresponding to the Module in Figure 3-2... 27
Figure 3-4. Examples of Loops in Flowgraphs ... 28
Figure 3-5. Test Cases in Loop Testing... 28
Figure 3-6. Control Flowgraph Augmented to Show Data Flow ..30
Figure 4-1. Typical Test Station Components for Functional Testing ..33
Figure 4-2. Example of a Transaction Flowgraph... 34
Figure 4-3. Example of Domains... 35
Figure 4-4. Examples of Two-Dimensional Domains with Examples of Test Values ... 36
Figure 4-5. Example of a Syntax Graph ..36
Figure 4-6. Example of a Decision Table..37
Figure 4-7. Example of a State Transition Diagram..38
Figure 5-1. Typical Test Station Components for Statistical Testing ... 43
Figure 6-1. Typical Test Station Components... 47

viii

ix

ACKNOWLEDGMENT

The authors thank and acknowledge Professor Richard Hamlet for reviewing this report and providing helpful
insights and comments.

x

1

TESTING EXISTING SOFTWARE FOR
SAFETY-RELATED APPLICATIONS

1. INTRODUCTION

1.1. Purpose

The increasing use of commercial off-the-shelf
(COTS) software products in digital safety-critical
applications is raising concerns about the safety,
reliability, and quality of these products. One of the
factors involved in addressing these concerns is
product testing. A tester’s knowledge of the software
product will vary, depending on the information
available from the product vendor. In some cases,
complete source listings, program structures, and other
information from the software development may be
available. In other cases, only the complete
hardware/software package may exist, with the tester
having no knowledge of the internal structure of the
software.

The type of testing that can be used will depend on the
information available to the tester. This report
describes six different types of testing, which differ in
the information used to create the tests, the results that
may be obtained, and the limitations of the test types.
An annex contains background information on types of
faults encountered in testing, and a Glossary of
pertinent terms is also included.

1.2. Scope, Assumptions and Limitations

This report specifically addresses testing of existing,
commercial off-the-shelf software for safety-related
applications and, therefore, makes no assumptions as
to the adequacy of the software process under which
the software was developed or of the capabilities of the
software developer. These and other questions must be
considered by whatever process determines the
acceptability of the COTS software product for a
particular use. Testing is only one aspect of an
acceptance process for a COTS software product.
Other aspects include a system design that carefully
allocates responsibilities to the computer system, a
hazard analysis of the system (including computer
hardware and software), an investigation of the
capabilities of the software developer, a mature
development process, and favorable experience data.
These aspects are discussed in the main report in this
NUREG/CR, and related information is found in
Lawrence (1993), Lawrence and Preckshot (1994), and
Preckshot and Scott (1995). Results obtained from

applying testing strategies discussed in this report will,
therefore, be used in combination with data from the
other information sources used in the acceptance
process.

This report provides an overview of key testing
techniques and their relationship to COTS software.
The quoted references should be consulted for more
detail. In particular, Beizer (1990) and Marick (1995)
provide detailed, practical information on carrying out
testing activities.

1.3. Report Organization

The body of the report consists of six sections,
numbered 2–7, which describe six different testing
strategies. Within each testing strategy, a number
specific testing techniques are described. The testing
strategies are:

• Static Source Code Analysis

• Structural Testing

• Functional Testing

• Statistical Testing

• Stress Testing

• Regression Testing.

Each of these sections is organized in a similar fashion:

• Purpose of the testing strategy

• Benefits and limitations of the testing strategy

• Information required to perform the tests

• Methods of performing the tests

• Discussion of the test techniques belonging to the
testing strategy.

The sections are meant to be read independently, so
some repetition of material occurs throughout sections
2–7.

An Annex has been included to provide additional
information regarding the types of faults discovered

2

during testing, as well as a Glossary of software
quality terms.

1.4. Definitions

Several terms used in this report are defined here. The
Glossary provides a more complete listing of
applicable terminology.

• Commercial Off-the-Shelf (COTS) software.
COTS software is developed for general
commercial use and, as such, is usually developed
without knowledge of the unique requirements of
particular applications. The term COTS, as used
here, does not denote an acceptance process nor
does it have any connotations regarding the
availability of source code or development process
records.

• Operational Profile. The operational profile of a
program is the statistical distribution function of
the inputs which will be encountered by the
program under actual operating conditions.

• Oracle. Any (often automated) means of judging
the correctness of a test execution.1

• Software Object. The software module, package,
program, subsystem, or system which is being
tested.

• Testing. “(1)The process of operating a system or
component under specified conditions, observing
or recording the results, and making an evaluation
of some aspect of the system or component. (2)
The process of analyzing a software item to detect
the differences between existing and required
conditions (that is, bugs) and to evaluate the
features of the software items.” (IEEE 610.12-
1990) In this report, the word “testing” is used in
both meanings.

1.5. General Comments on Testing

This section contains brief comments on software
testing that apply generally to the remainder of the
report. Note that the tables of Section 1 should not be
read as absolutes, but as general guidance. In particular
cases, some connections indicated in the tables may
not be relevant, and some connections that are not
indicated in the tables may be important. Nevertheless,
in most cases, the tables provide general guidance for
testing safety-related COTS software.

1A more restrictive definition is given by Beizer (1990) who states,
“An oracle is any program, process, or body of data that specifies the
expected outcome of a set of tests as applied to a tested object. . .
The most common oracle is an input/outcome oracle—an oracle that
specifies the expected outcome for a specified input.” This is more
difficult to create and is not necessary to this report.

1.5.1. Testing Goals and Software Qualities

To be effective, testing should be directed at measuring
some quality of the software. The various testing
strategies address different sets of software qualities.
For this reason, a comprehensive testing program will
incorporate as many strategies as possible in an
attempt to assess the overall soundness of the software.
Within this context, special emphasis can be placed on
those strategies that are related to quality attributes of
particular concern.

Hetzel (1984) divides software qualities into three sets:
external, internal, and future. External qualities
describe the functionality of the software; internal
qualities describe the engineering aspects of the
software; and future qualities describe the adaptability
of the software. Many possible software qualities have
been described in the software engineering literature.
A list of qualities collected by Hetzel (1984) and by
Charette (1989) has been arranged by the likely impact
of the qualities on safety in Table 1-1. Definitions of
these qualities are given in the Glossary.

The six different testing strategies are not equally
suited to all of the software qualities. Table 1-2
suggests which strategies to use for the qualities that
are of primary and secondary interest in safety-related
reactor applications. The table provides a cross
reference between software qualities and strategies
used to test for these qualities. These linkages can be
useful to both developers and evaluators of COTS
software. Regression testing attempts to ensure that
changes made to the software, either during
development or after installation, do not affect a
software object in unplanned areas. It consists of re-
execution of previous testing and, therefore, addresses
the qualities previously demonstrated with other forms
of testing.

1.5.2. Software Objects

Software objects subject to testing range from
programming language statements to complete
systems, and the type and amount of testing will
generally vary across this range. To provide some
consistency within this report, five classes of objects
are defined. In particular instances, some classes may
coalesce. For example, in the simplest case of a system
consisting of a single module, all five classes are
compressed into one. Most classes will be distinct in
safety-critical systems.

Software object terminology is defined for
conventional third-generation programming languages
such as Ada, C, C++, Pascal, and FORTRAN.
Extensions to fourth-generation languages and visual
programming environments should be straightforward.

3

Table 1-1. Safety Impact of Software Qualities from a Regulator Viewpoint2

Impact on Operational Safety

Primary Impact Secondary Impact Little Impact

External (Functional)
Qualities

Accuracy
Acceptability
Availability
Completeness
Correctness
Interface Consistency
Performance
 (Efficiency, Timing)
Preciseness
Reliability
Robustness
Security
Usability

User Friendliness

Internal (Engineering)
Qualities

Integrity
Internal Consistency
Testability
Validity

Clarity
Interoperability
Simplicity
Understandability

Accountability
Adaptability
Generality
Inexpensiveness
Manageability
Modularity
Self-Descriptiveness
Structuredness
Uniformity

Future Qualities Accessibility
Augmentability
Convertibility
Extendibility
Maintainability
Modifiability
Portability
Reparability
Reusability
Serviceability

2Note that qualities associated with modifications that might be made in the operations phase have been listed in the “Little Impact” category
because an assumption is made here that, in typical safety-related reactor applications, changes will be infrequent. To the extent that such
software might be used in an environment with regularly changing requirements, these qualities assume more importance. It should also be noted
that, in some cases, listed qualities have essentially the same meaning but may have slightly different interpretations depending on the context.
Since they all appear in the literature, no attempt has been made to group them. They are, however, categorized consistently.

4

Table 1-2. Testing Strategies Appropriate to Software Qualities

Software Quality Static
Analysis

Structural
Testing

Functional
Testing

Statistical
Testing

Stress Testing

Acceptability X O

Accuracy O X X

Availability X X

Clarity X

Completeness X X O

Correctness X X X X

Integrity O X X

Interface Consistency X X

Internal Consistency X X O

Interoperability X X

Performance (efficiency
& timing)

O X X

Preciseness O X X

Reliability X

Robustness O X X

Security O X X

Simplicity X

Testability X

Understandability X

Usability X X

User Friendliness X

Validity X X

Regression Testing O X O X

X = Strategy should be used for the specified quality
O = Strategy may be used for the specified quality

• A module is a named collection of programming
language statements. Alternate names are
subroutine, procedure, or unit.

• A package is a collection of one or more modules
which relate to a common topic. Packages are a
key feature of object-oriented programming
languages such as Ada and C++. For example, a
set of modules that processes dates could be
combined into a calendar package. A set of
modules that manages sensor information (read,
check status, convert data) could be combined into
a sensor device-driver package.

• A program is a set of one or more packages and
modules which can be executed on a computer.

Programs are created by means of a linker or
loader and can be stored in a file or PROM3 for
future use.

• A subsystem consists of one or more modules,
packages and programs which are devoted to one
or more related functions, or which must execute
together to achieve a desired task, or which
execute concurrently on the same processor.
Examples include a set of programs which
performs various kinds of report production, and a
set of programs which reads and processes sensor

3 Programmable read-only memory.

5

data on one computer and sends the results to be
displayed on another computer.

• A system is the entire set of subsystems which
manages a complete application.

Table 1-3 shows a different perspective. It matches
different test strategies to different classes of software
objects. The checked entries show which testing
strategies are primarily recommended for each class of
object. Note that any strategy could apply to any class
of object under specific circumstances. The table
merely provides general guidance.

Objects are classified here according to structure, and
this classification is used throughout the report.
Another method of classification relates to structural
complexity. This might yield a series such as batch
processing, interactive time-sharing, transaction
processing, real-time process control, and real time
vehicle control. However, this report is limited to real
time process control systems.

A further classification dimension involves the
interaction of processes and ranges from single process
systems to multiple-process shared-memory concurrent
systems. This dimension affects primarily the amount
of testing required and the difficulty of creating and
judging the tests. In particular, stress testing is very
important as the amount of interaction increases.

1.5.3. Testers

Testing is frequently carried out by different categories
of personnel. A primary concern when safety is an
issue is independence of testing from development.4

4Independent V&V is used when it is necessary to have an impartial,
objective analysis and test conducted of the software/system. The
notion is that difficult-to-discover errors which may reside in the
software due to assumptions or technical biases inadvertently
introduced by the development team would have a higher probability
of being detected by an impartial, objective V&V team who would
apply a fresh viewpoint to the software. IV&V is used for high-
criticality software, which demands the integrity of critical functions
due to life-threatening consequences of failure, unrecoverable
mission completion (e.g., space probes), safety or security
compromises, financial loss, or unacceptable social consequences.
Independence is defined by three parameters: technical, managerial,
and financial. The degree of independence of the V&V effort is
defined by the extent that each of the three independence parameters
is vested in the V&V organization. The ideal IV&V contains all
three independence parameters. Technical independence requires
that the IV&V team (organization or group) utilize personnel who
are not involved in the development of the software. An effective
IV&V team has personnel who have some knowledge about the
system or whose related experience and engineering background
gives them the ability to quickly learn the system. In all instances,
the IV&V team must formulate its own understanding of the
problem and how the proposed system is solving the problem. This
technical independence (“fresh viewpoint”) is crucial to the IV&V
team’s ability to detect the subtle errors that escape detection by
development testing and quality assurance reviewers. (Personal
communication on work being done on the update of IEEE 1012).

During development, the software engineer who
develops code may be involved in some of the testing.
Some independence can be achieved by using other
software engineers from the developing organization.
Greater independence can be achieved if the customer
or an IV&V organization performs testing activities. In
these cases, testing could be subcontracted. For
example, the customer might hire a company to carry
out testing on its behalf or it might do the testing itself.
When COTS software is to be tested by the customer,
it is unlikely that parties from the developing
organization will be involved in the testing effort, so
independence would generally be assured. In any case,
note that it is essential that the testers be well-qualified
and knowledgeable of the application.

Table 1-4 shows which categories of tester are most
likely to carry out testing on the different types of
software objects. As with the previous tables,
exceptions do occur. For example, a programmer could
carry out all testing strategies.

Table 1-5 similarly shows which categories of testers
are likely to use the different testing strategies. Again,
these are recommendations, not absolutes.

1.5.4. The Testing Life Cycle

Software testing has a life cycle of its own that is
similar to the software development life cycle. Testing
life cycle phases generally include planning,
requirements, design, implementation, and operation
(execution). Note that V&V activities apply to testing
life cycle products (reviews of test plans & designs,
etc.) in addition to software development life cycle
products.

If testing is carried out by or on behalf of the
development organization, the testing life cycle phases
should occur concurrently with the development life
cycle phases. This is not likely to be possible with
customer testing of COTS software. However, the
testing life cycle should still exist and be carried out.

Testing life cycle activities are described in detail in
IEEE Software Engineering Standards 829 and 1074
and are not discussed here. The following list provides
a brief synopsis of the activities based on these
standards, assuming that the testing will be carried out
by (or on behalf of) the customer.

• Test planning activities

– Prepare test plan

• Test requirements activities

– Determine the software qualities for which
testing is required

– Determine the software objects to be tested

– Obtain needed resources: budget, time, and
assignment of personnel

6

Table 1-3. Test Strategies Appropriate for Software Objects

Module Package Program Subsystem System

Source Code
Analysis X

Structural X O O

Functional O X X X X

Statistical X X X

Stress O X X X

Regression X X X X X

X = Test strategy should be used on specified software object
O = Test strategy may be used on specified software object

Table 1-4. Expected Pattern of Testers and Software Objects

Module Package Program Subsystem System

Software
Engineer X X O

Development
Organization O X X O O

Customer X X

Independent
Tester O O X X X

X = Tester is likely to test specified software object
O = Tester may test specified software object

Table 1-5. Strategies Used by Testers

Software
Engineer

Development
Organization Customer

Independent
Tester

Source Code
Analysis X O O

Structural X X O

Functional X X X X

Statistical O X X

Stress O X X X

Regression X X X X

X = Test strategy should be used on specified software object
O = Test strategy may be used on specified software object

7

• Test design activities
– Prepare test design specifications
– Prepare test procedures
– Prepare test case specifications
– Design test station

• Test implementation activities
– Prepare test cases
– Prepare test data
– Create test station

• Test execution activities
– Execute test cases
– Analyze test results
– Prepare test reports

1.6. Faults, Errors, Failures

One purpose of testing is to identify and correct
program faults, which is done by examining program
failures.

1.6.1 Definitions

A fault is a deviation of the behavior of a computer
system from the authoritative specification of its
behavior. A software fault is a mistake (also called a
bug) in the code.

An error is an incorrect state of hardware, software, or
data resulting from a fault. An error is, therefore, that
part of the computer system state that is liable to lead
to failure. Upon occurrence, a fault creates a latent
error, which becomes effective when it is activated,
leading to a failure. If never activated, the latent error
never becomes effective and no failure occurs.

A failure is the external manifestation of an error. That
is, a failure is the external effect of the error, as seen
by a user (human or physical device), or by another
program.

1.6.2 Relationship of Faults, Errors, and Failures

Assume that the software object under test contains a
fault B. Depending on the circumstances, execution of
the code containing fault B may or may not cause a
change of state which creates an error E. Again,
depending on circumstances, E may or may not cause a
failure F to occur.5 Note that neither fault B nor error E
is observable; only failure F is observable.

5 Considerable time delays may occur between these events. B could
potentially cause more than one type of error, and each such error
could potentially cause more than one type of failure, depending on
the actual execution circumstances of the code.

Dynamic testing6 consists of presenting the software
object with a sequence of inputs I and observing
failures. This amounts to searching for sequences I →
B → E → F. Other sequences are possible. For
example:

I alone (that is, no fault is encountered),

I → B (but no error occurs),

and I → B → E (but no failure occurs).

None of these sequences can be observed from system
output, although two of them do contain faults.

As an example, suppose a program contains the
statement

x1l = (a + b) / (c + d)

This statement is used later on in one of two ways,
depending on the value of a flag variable which is
almost always true:

if (flag) then y = x1l - 4

else y = x11 + 3

There is a fault here, since the last statement contains a
typographical error - x11 (‘ex-one-one’) is used
instead of x1l (‘ex-one-el’). Most of the time, this
does not matter, since the faulty statement is rarely
executed. However, if it is executed, then variable ‘y’
will have an incorrect value, which is an error
(incorrect state). As long as ‘y’ is not used, no
observable harm occurs. Once ‘y’ is used later in a
calculation, however, the program may perform an
incorrect action, or simply fail. This action (or the
program’s failure) is the failure F mentioned above.

Although the cause of the failure runs fault-error-
failure, the diagnosis usually takes place in the other
order: failure-error-fault. Specifically, from failure F,
the activity of debugging attempts to infer the error
which caused the failure; this may or may not be done
correctly. The fault B must itself be inferred from the
inferred error; again, this may or may not be done
correctly. If the causal analyses of either of the
sequences, F → E or E → B, is done incorrectly, fault
B is not likely to be corrected. Worse, a correct piece
of code may be inappropriately “fixed,” resulting in a
new fault in the software object.

An implication of this is that any estimate of the
effectiveness of a testing activity is inaccurate by an
unknown (and almost certainly unknowable) amount.
In particular, any estimate of the number of faults
remaining in the software object which is derived from

6Static analysis, discussed in Section 2, is an attempt to discover
faults directly by examining the source code.

8

testing is imprecise by an unknown amount. This
should not be surprising—similar effects can be
observed in science anytime inductive reasoning is
used.

It is widely believed by software engineers that a
properly designed test program can reduce the
uncertainties in testing effectiveness sufficiently that
they can be acceptably ignored. The operative words
are “properly” and “believed.” The first word is itself
ill-defined, while “belief” lacks the confidence that
comes with scientific or mathematical proof. A final
point is that extending a general belief (that applies
generally to testing) to a specific software object under
test adds an additional inference of unknowable
uncertainty.

These observations apply to all dynamic testing
strategies discussed below except statistical testing.
The latter is inherently interested in failures rather than
faults, so the argument does not apply. This argument
helps explain, however, why testing can never be
perfect.

1.7. Selection of Testing Strategies and
Techniques

This section discusses the context and goals associated
with the testing of COTS software and provides
guidelines for applying the various testing strategies
discussed in the following sections.

1.7.1. Context for Selecting Testing Strategies

The testing of a COTS software item is normally done
within the context of a larger process whose goal is to
determine the acceptability or non-acceptability of the
COTS software for use in a particular application.
Consequently, this report does not address the issue of
determining acceptance criteria for the use of a COTS
software item in a particular application. It is assumed
that the acceptance process will identify specific needs
to be addressed with testing, that this report will serve
as a reference for planning and conducting the
necessary testing, and that the results will be evaluated,
with other information, within the context of the
acceptance process.

A COTS software item might be tested in order to gain
additional information about the product itself or to
examine the behavior of the product in the planned
application. In general, the more important a COTS
software item is to safety, the less one would expect to
need after-the-fact COTS software testing to augment
other information in order to demonstrate acceptability.
In other words, the COTS software item should already
be demonstrably well-qualified for its intended role. In
this case, testing activities will probably be narrowly
focused on particular qualities or attributes of the
software. For items less important to safety, it may be

appropriate (depending on the specifics of the
acceptance process) to rely to a larger degree on after-
the-fact testing, and a more comprehensive testing
effort might be appropriate. Regardless of the scope of
any potential testing effort, it will be useful to obtain
information about past and current faults as well as
configuration and operating parameters, reliability and
availability, and comments about other qualities based
on the experience of users of the COTS software item.

In addition to augmenting the testing effort conducted
during software development, there might also be new
requirements specific to the intended use of the COTS
software item that should be addressed with testing.
These might be related to particular safety functions to
be performed, special performance constraints,
adaptation to new hardware platforms, particular
standards adopted for the application, or a need for
demonstrating high confidence in particular software
qualities. In these cases, the appropriate strategies must
be selected to address the areas of concern. This testing
effort could be quite extensive. For example,
functional testing might be used to verify that certain
functions are handled correctly, stress testing might be
used to examine performance in the target
environment, and statistical testing could be applied to
assess reliability.

1.7.2. Considerations for Selecting Testing
Strategies

This subsection provides assistance in selecting testing
strategies and techniques to meet the needs defined by
a COTS acceptance process. Since there may be
multiple techniques that will address a particular
testing question, and since it is not possible to
anticipate all types of questions that might arise in
various situations, the information provided must be
considered as guidance rather than as a prescriptive
formula. It should also be noted that this section refers
to traditional third-generation languages (e.g., Ada, C,
C++, Fortran, and Pascal) and does not necessarily
apply specialized or developing technologies such as
artificial intelligence systems.

The process of selecting testing strategies for a COTS
software item is constrained by the information
available. Table 1-6 presents a summary of the
minimum information required for the various testing
strategies. Representative information is also provided
regarding the extent of testing to be applied when
using a particular testing strategy; refer to the
appropriate section for more detail. Table 1-6 provides
a first-order estimate of the prerequisites and scope of
a testing effort. Each situation is unique and the
reviewer should refer to the text and other references to
make determinations regarding the nature and extent a
specific testing effort. The terminology used in Table
1-6 is explained in later sections of this report.

9

Table 1-7 presents a set of questions about software
qualities that can be addressed by selected testing
strategies. The table is not exhaustive. However, it
provides useful examples for selecting testing
strategies to meet specific testing requirements. The

taxonomy of faults presented in the Annex is also
helpful in selecting testing strategies. The terminology
used in Table 1-7 is explained in later sections of this
report.

Table 1-6. Sample Prerequisites for and Extent of Testing

Strategy:
Technique Goal

Minimum Information
Required

Suggested Extent of
Testing/Analysis

Static:

Inspection
(I0)

Examine architectural design
with requirements as reference

Software requirements;
architectural design

One or more inspections. Group
decision on re-inspection based on
inspection results.

Inspection
(I1)

Examine detailed design with
architectural design as
reference

Architectural &
detailed design

One or more inspections. Group
decision on re-inspection based on
inspection results.

Inspection
(I2)

Examine source code with
detailed design as reference

Source code & detailed
design

One or more inspections. Group
decision on re-inspection based on
inspection results.

Inspection
(other)

Check code for specific
qualities, properties, or
standards adherence (can be
part of I2)

Source code One or more inspections. Group
decision on re-inspection based on
inspection results.

Inspection
(other)

Verify allocation of software
requirements

System requirements &
software requirements

One or more inspections. Group
decision on re-inspection based on
inspection results.

Inspection
(other)

Check application-specific
safety requirements

System & software
safety requirements;
hazard/risk analyses

One or more inspections. Group
decision on re-inspection based on
inspection results.

Desk
checking

Verify key algorithms &
constructs

Source code One pass per revision; continue
until no new faults are found.

Automated
structural
analysis

Produce general/descriptive
information; compute metrics
values

Source code One pass per revision

Automated
structural
analysis

Fault detection Source code One pass per revision; continue
until no new faults are found.

Automated
structural
analysis

Standards violations Source code One pass per revision; continue
until no new faults are found.

10

Table 1-6. Sample Prerequisites for and Extent of Testing (cont.)

Strategy:
Technique Goal

Minimum
Information Required

Suggested Extent of
Testing/Analysis

Structural:

Path Verify internal control flow Source code; module
design specification

Branch coverage

Loop Verify internal loop controls Source code; module
design specification

Focus on loop boundaries

Data flow Verify data usage Source code; module
design specification

All-'definition-usage'-pairs

Domain
(structural)

Verify internal
controls/computations over
input domains

Source code; module
design specification

Focus on boundaries

Logic
(structural)

Verify internal logic
(implementation mechanisms)

Source code; module
design specification

All combinations of conditions

Functional:

Transaction Verify implementation of
application functions

Executable, software
requirements

All transactions

Domain Verify functional
controls/computations over
input domains

Executable, software
requirements

Representative domain values
including boundary and illegal
values

Syntax Verify user interface and
message/signal constructs

Executable, software
requirements

All input/message constructs

Logic Verify implementation of the
logic of the real-world
application

Executable, software
requirements

All combinations of real-world
conditions

State Verify implementation of
states associated with the real-
world application

Executable, software
requirements

All states/transitions

Statistical Estimate reliability Executable, software
requirements,
operational profiles

Predetermined reliability target

Stress Examine robustness;
characterize degradation with
increasing loads on resources

Executable, software
requirements

One pass per resource per revision
per operating mode; sampling of
combinations of resource loads

Stress Find breaking points; check
recovery mechanisms

Executable, software
requirements

Continue testing a resource until
failure & recovery modes are well
understood

Regression Verify that changes have not
impacted the software in
unexpected ways

Various input needed
depending on test
strategies used in the
regression test suite

Continue until no new failures are
detected

Legend:
ASA Automated Structural Analysis I Inspection Se State Testing
D Domain Testing L Logic Testing Sx Syntax Testing
DC Desk Checking Lp Loop Testing T Transaction Testing
DF Data Flow Testing P Path Testing

11

Table 1-7. Typical Testing Strategies for Investigating Software Qualities

Software
Quality Also see: Question to be Answered

Applicable Testing
Strategies

Acceptability Validity Are real-world events handled properly? Functional (T,D,L,Se)

How does the product perform in realistic,
heavy load situations?

Stress

Accuracy Preciseness Are internal calculations accurate? Structural (DF)

Are results accurate? Functional (T)

Is there confidence that important calculations
are accurate?

Static analysis (I,DC)

Availability Reliability Will the software be unavailable due to poor
reliability?

Statistical

Will functions be available during heavy load
situations?

Stress

Clarity Understand-
ability

Is the implementation sufficiently clear to a
knowledgeable reviewer?

Static analysis (I,DC)

Completeness Are all requirements expressed in the design? Static analysis (I)

Are all design elements implemented in the
code?

Static analysis (I)

Are internals complete? (no missing logic,
undefined variables, etc.)

Static analysis (ASA,I)

Are all aspects of real-world transactions
implemented?

Functional (T)

Are boundary values and all combinations of
conditions accounted for?

Functional (D,L,Se)

Are recovery mechanisms implemented? Stress

Correctness Does the product have statically detectable
faults?

Static analysis (All)

Is the implementation/modification structurally
correct?

Structural (All)

Is the implementation/modification functionally
correct?

Functional (All)

Does the product perform correctly in heavy
load situations?

Stress

Have modifications had unintended effects on
the behavior of the software?

Regression

Integrity Security Are access control schemes appropriate? Static analysis (I)

Are access controls and internal protections
correctly implemented?

Structural (All)

Is end-user access management correct? Functional (T)

Are access-related boundary values, logic,
states, & syntax correctly implemented?

Functional (D,Sx,L,Se)

Legend:
ASA Automated Structural Analysis I Inspection Se State Testing
D Domain Testing L Logic Testing Sx Syntax Testing
DC Desk Checking Lp Loop Testing T Transaction Testing
DF Data Flow Testing P Path Testing

12

Table 1-7. Typical Testing Strategies for Investigating Software Qualities (cont.)

Software
Quality Also see: Question to be Answered

Applicable Testing
Strategies

Interface
Consistency

Internal
Consistency

Have interface standards & style been followed? Static analysis (ASA,I)

Is parameter & variable usage consistent across
interfaces?

Static analysis (ASA,I)

Is transaction data handled consistently among
modules?

Functional (T)

Are boundary conditions treated consistently? Functional (D)

Is message syntax consistent? Functional (Sx)

Is decision logic consistent among modules? Functional (L)

Are system states consistently treated among
modules?

Functional (Se)

Internal
Consistency

Interface
Consistency

Have standards & style been followed? Static analysis (ASA,I)

Is parameter & variable usage consistent? Static analysis (ASA,I)

Are conditions handled consistently with respect
to control flows?

Structural (P, Lp,D,L)

Are there inconsistencies in data handling?
(typing, mixed mode, I/O compatibilities, etc.)

Structural (DF)

Are real-world events and logic handled
consistently?

Functional (L, Se)

Inter-
operability

Does the architecture facilitate interoperability? Static analysis (I)

Do modules used in transactions exchange &
use information properly?

Functional (T,D,Se)

Performance Is intra-module timing within specification? Structural (P,Lp)

Are transactions performed within required
times?

Functional (T)

Are timing requirements met when boundary
values are input?

Functional (D)

Is system performance adequate under heavy
load conditions?

Stress

Preciseness Accuracy Will internal representations yield required
precision?

Static analysis (DC)

Are internal calculations sufficiently exact? Structural (DF)

Are real-world transaction results sufficiently
exact?

Functional (T)

Reliability Availability What is the probability of running without
failure for a given amount of time?

Statistical

Legend:
ASA Automated Structural Analysis I Inspection Se State Testing
D Domain Testing L Logic Testing Sx Syntax Testing
DC Desk Checking Lp Loop Testing T Transaction Testing
DF Data Flow Testing P Path Testing

13

Table 1-7. Typical Testing Strategies for Investigating Software Qualities (cont.)

Software
Quality Also see: Question to be Answered

Applicable Testing
Strategies

Robustness Has appropriate recovery logic been
implemented?

Static analysis (I)

Are poorly specified/invalid transactions
handled correctly?

Functional (T,Sx)

Are marginal/illegal inputs handled correctly? Functional (D,Sx)

Are unexpected combinations of
conditions/states handled correctly?

Functional (L,Se)

Can the system continue operating outside of
normal operating parameters?

Stress

Security Integrity Are access controls properly
designed/implemented?

Static analysis (I)

Are access controls consistent with the
operating environment?

Static analysis (I)

Are the structural aspects of access control
mechanisms correct?

Structural (All)

Security
(continued)

Do access management functions work
correctly?

Functional (T)

Do access management functions work correctly
in the presence of marginal or illegal values and
constructs?

Functional (D,Sx,L,Se)

Simplicity Are implementation solutions overly complex? Static analysis (I)

Are complexity-related metric values reasonable
for a given situation?

Static analysis (ASA,I)

Testability How can aspects of the software be tested? Static analysis (DC,I)

Understand-
ability

Clarity Is the designer/implementer intent clear? Static analysis (DC,I)

Does information characterizing the software
make sense?

Static analysis (ASA,I)

Usability User
friendliness

Can the user correctly form, conduct, &
interpret results of transactions?

Functional (T,D,Sx)

Does the user interface design support
operational procedures?

Static analysis (I)

User
friendliness

Usability Is the user comfortable in forming, conducting,
and interpreting results of transactions?

Functional (T,Sx)

Validity Acceptability Are requirements traceable? Static analysis (I)

Are implementation solutions appropriate? Static analysis (DC,I)

Is the real world appropriately represented? Functional (All)

Is the implementation/modification structurally
correct?

Structural (All)

Is the implementation/modification functionally
correct?

Functional (All)

14

15

2. STATIC SOURCE CODE ANALYSIS

2.1. Purpose of Static Source Code
Analysis

Static source code analysis is the examination of code
by means other than execution, either manual or
automated, with the intent of (1) producing general,
metric-related, or statistical information about a
software object, (2) detecting specific types of faults in
a software object, (3) detecting violations of standards,
or (4) verifying the correctness of a software object.
Static analysis pertains to certain categories of faults
and should be considered complementary to dynamic
testing in the overall testing effort. The qualities
addressed by static analysis, summarized in Table 1-2,
are discussed below.

The section is primarily focused on static source code
analysis; however, some techniques, such as
inspection, have broader applicability. Some of these
extensions are discussed below.

2.2. Benefits and Limitations of Static
Source Code Analysis

Static analysis is code examination without code
execution. This approach provides a different way of
thinking about fault detection and, therefore, static
analysis techniques are best applied as part of an
overall testing (or verification and validation) program
that also includes extensive dynamic testing. The
advent of automated, interactive software
environments and testing tools is blurring the
distinction between dynamic testing and static analysis
somewhat. In some of these tools, results are available
from static examinations carried out in support of
dynamic, structural testing. The use of interpreters as
code is being examined can automate the desk
checking technique of stepping through lines of code
and, therefore, can produce information about run-time
states (although this information may also be related to
the use of the interpreter).

2.2.1. Benefits

There are a number of features of static analysis
techniques that make them an effective complement to
dynamic techniques. The inspection or review-oriented
techniques have the advantage of combining the
different perspectives of the participants and can
produce fault information that may be overlooked by a
single examiner. Inspections have been found to be
very effective in detecting the types of faults that can
be found with static techniques. In addition, manual
static analysis techniques can easily incorporate

project-specific standards adopted for the application
of a COTS item to a particular use. Automated
structural analyzers can perform large numbers of
static checks that could not be performed manually,
and may detect structural faults that might go
undetected in dynamic testing since all possible paths
cannot be covered by test cases. Static analysis
techniques that provide general information about
software objects can produce information that will be
valuable in developing test cases for dynamic testing.

Regarding the assessment of software qualities, static
analysis techniques are effective in examining software
for possible faults related to completeness,
consistency, and validity. For example, information
about the completeness of a software item can be
gained from automated structural analyses that
discover missing logic, unreachable logic, or unused
variables. Inspections can provide information about
the traceability of requirements. Both inspections and
automated structural analyses provide a means for
evaluating the consistency of application of standards
and style guidelines, as well as for checking parameter
and variable usage from a static perspective. Desk
checking can provide information about the accuracy
and precision of algorithm implementations.

Static analyses also provide information about other
software qualities that may be important to the
intended use of a COTS software item, including
testability, usability, interoperability, clarity,
understandability, robustness, and simplicity. These
tend to be areas where judgment is required, making
the manual techniques particularly effective. The
qualities are addressed with the manual techniques by
including the appropriate considerations in inspection
checklists or desk-checking tasks. For example, the
number of questions about intent raised during an
inspection is an indicator of understandability. In
addition, automated structural analyses can provide
metrics and structural information that is useful in
assessing these software qualities.

2.2.2. Limitations

Static analysis techniques, in general, do not provide
much information about run-time conditions. In
addition, many of these techniques are labor-intensive
and, therefore, can be quite expensive to carry out. In
cases where there are project-specific considerations
that need examination by an automated tool, automated
analyzers must be developed, which is also a costly
endeavor.

16

2.3. Information Required to Perform
Static Source Code Analysis

As a minimum, the source code must be available. For
most static analysis techniques to be effective, it is also
necessary to have information on the context (intended
usage), requirements, and design of the software object
being examined. To select effective approaches for
static analysis, it is useful to know what static analysis
capabilities were applied in the development
environment. In particular, most compilers perform
various types of automatic static checking. In many
cases, this checking is limited to those checks that
support the compiler’s primary goal of detecting
syntactic faults before translating statements to object
code. Compiler results such as syntactic correctness,
uninitialized variables, cross reference listings and
similar matters are a very useful part of static analysis,
but should be considered as the first step in static
analysis, not the totality. Information on the compiler
checks performed is useful in determining the relative
emphasis to place on the various other techniques that
might be applied.

Since one goal of static source code analysis is to
detect violations of standards, it is necessary to have
information regarding the standards applied during the
development effort. This information may be difficult
to obtain for COTS software; however, some
information, such as language standards or the
compiler used, should be available. Perhaps a more
important application of standards checking is the
development (by the testing or customer organization)
of required standards regarding what is acceptable for
the particular COTS software application. For
example, if certain language constructs are permitted
by the language standard but are known to be
troublesome in past practice, a safety-critical
application might require a local practice standard that
prohibits their use.

2.4. Methods of Performing Static Source
Code Analysis

The static analysis of source code for a software object
must be planned, designed, created, executed,
evaluated, and documented.

2.4.1. Static Analysis Planning and Requirements

The following actions are required to plan and generate
requirements for static analysis of software objects.

1. Determine the software qualities to be evaluated
with static techniques. Qualities typically
examined in static source code analysis are shown
in Table 1-2. For the static analysis of safety-
related COTS software, the primary quality of
interest is correctness, particularly as it is related
to the qualities of completeness, consistency, and

validity. Other qualities, that may be of interest,
depending on the intended role of the COTS
software item, can be assessed with static analysis.
These include testability, usability,
interoperability, clarity, understandability, and
simplicity.

2. Determine which static analysis techniques will be
required. Code inspections and automated
structural analyzers are recommended as a
minimum.

3. Determine what resources will be required in
order to carry out the analyses. Resources include
budget, schedule, personnel, equipment, analysis
tools, and the platform for automated structural
analyses.

4. Determine the criteria to be used to decide how
much static analysis will be required. This is a
stopping criterion—how much analysis is enough?

5. Determine the software objects to be examined.

2.4.2. Analysis Design and Implementation

The following actions are required to design and
implement static analyses.

1. Create procedures for carrying out the analyses.
For techniques such as code inspection, this
involves tailoring the technique to the particular
project environment. For other static source code
analyses, the procedures will specify analyses to
be applied.

2. Prepare for the orderly and controlled application
of the individual analyses. The following
information should be prepared for each analysis:

a. Analysis identification. Each analysis must
have a unique identifier.

b. Purpose. Each analysis must have a specific
reason for existing. Examples include the
application of an automated standards auditor
to a block of code or the examination of a
block of code to determine whether a
particular error-prone construct has been
used.

c. Input data. The precise data, if any, required
in order to initiate the analysis must be
specified. This should include any parameter
values needed by automated analyzers (this
information may also be appropriate as part of
the procedures).

d. Initial state. In order to reproduce an analysis,
the initial state of the automated analyzer may
need to be specified.

17

e. Results. The expected results of the analysis
must be known and specified. This could
include the absence of a detection of the fault
being targeted or the specific value range of a
metric.

3. Create the platform to support the automated
structural analyses. This is a mechanism for
selecting, executing, evaluating, and recording the
results of analyses carried out by automated static
analyzers on the software object.7 An automated
structural analyzer might perform a pre-
programmed set of checks or might require input
to select specific checks (as with an interactive
tool). Platform components, illustrated in Figure
2-1, include:

a. Analysis case selection. A means of selecting
analysis cases (checks) to be executed is
required. This information may be kept in a
file or database, and the selection may simply
consist of “get next analysis case.”

b. Analyzer program. A means of setting the
analyzer’s initial state (if necessary),
providing input to the analyzer, and recording
the output from the analyzer is required.

c. Results database. A means of recording the
results for future analysis and evaluation is
needed. Typical data to be captured include
the analysis identifier, date, version of
module, analysis output, and an indication of
the acceptability of the results.

2.4.3. Execution and Evaluation of the Analyses

The procedures must be carried out and analyzed. If a
fault is indicated in the software object and the
development organization is performing the analysis,
the software engineer is expected to correct the fault.
The pattern of test–fix–test–fix continues until all
discrepancies have been resolved.

In the case of COTS, obtaining corrections may be
very difficult. Suppose the analysis is being performed
by (or on behalf of) the customer. If the software was
developed for the customer under contract, there
should be considerable leverage for obtaining
corrections. If the software is a consumer product (for
example, a library accompanying a compiler used for
development), experience shows that many developers
have little interest in expensive repairs that satisfy a
limited marketplace. In this case, the options of the
customer may be simply to reject the software or to
evaluate each fault detected and determine its effects

7The process of selecting and initiating analyses and evaluating the
results might be a manual activity; in this case the platform
described is largely conceptual, although the databases should exist
and be controlled.

on safety. If more than one fault exists, the cumulative
effect of all the faults on safety must also be
determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related to
new requirements or standards arising from the
specific, intended application of the COTS product.
They might also be minor faults that might have
escaped detection during product development. In
these cases, the significance of the faults should be
evaluated and the options for obtaining corrections
might be pursued. However, if one or more serious
faults pertaining to the product itself are discovered,
confidence decreases rapidly regarding the suitability
of the product for use in a safety-related application.

2.5. Discussion of Static Source Code
Analysis

Static source code analyses, whether done totally
manually or supported by automated techniques, are
typically manpower-intensive processes. Manual
processes such as inspections require team efforts.
Many of the computer-aided methodologies require the
involvement of the development team, the
development of project-specific tools, or on-line use of
interactive tools.

It should be noted that, although these techniques
involve high manpower costs, static analysis
techniques are effective in detecting faults. One
controlled experiment (Basili and Selby, 1987) found
that code reading detected more software faults and
had a higher fault detection rate than did functional or
structural testing. Since static analysis and dynamic
testing detect different classes of faults, a
comprehensive effort should employ as many static
and dynamic techniques as are practical for the specific
project. The remainder of this section discusses various
static analysis techniques.

2.5.1. Inspection

Among the manual techniques, code inspection, peer
reviews, and walkthroughs are effective methods for
statically examining code. The techniques are
essentially similar in that teams of programmers
perform in-depth examinations of the source code;
however, code inspections are distinguished by the use
of checklists and highly structured teams. One of the
important benefits common to these techniques is that
the different perspectives and backgrounds of the
participants help uncover problems that the original
software engineer overlooked. All three techniques
benefit from the participation of development team
members and probably lose some effectiveness if these

18

Selection

Results
Database

OutputInput
Analyzer
Program

Software
Object

Analysis
Repertoire

Figure 2-1. Conceptual Platform for Automated Static Analysis

members are not present, which is likely to be the case
with COTS software. However, careful attention to the
development and tailoring of checklists for a particular
COTS application, along with the high degree of
structure provided by the inspection process, should
make source code inspections a valuable static analysis
technique for COTS software. Peer reviews and
walkthroughs are not discussed further here;
information on how to perform structured
walkthroughs can be found in Yourdon (1989).

Fagan (1976) provides the definitive work on
inspections, a technique that can apply to a wide range
of products. Inspections are defined for three points,
labeled I0, I1, and I2, in the programming process.
Fagan inspections that inspect against the software
requirements are called I0 inspections. These
inspections would typically be performed as part of the
software design activities, as described in
NUREG/CR-6101 (Lawrence, 1993). I1 inspections
are typically performed as part of the software design
activities and inspect against high-level software
architectural design. I2 inspections are performed
during software implementation and inspect
implemented code. Figure 2-2 shows the relationship
between software activity, product, and inspection
type.

I0 inspections typically examine the set of unit and
program designs, and their interactions to determine
whether the functional content is consistent with the
specified software requirements. Of particular interest
for this inspection are data flows among system
components and potential processing deadlocks. I1
inspections target design structure, logic, and data
representation based on the previously inspected high-
level design. I2 inspections focus on the translation of
the detailed design into code and compliance with
standards, and are commonly referred to as source

code inspections. Depending on the information
available about a COTS software product, any of the
inspections described can be an effective technique for
examining the product. In evaluating a COTS software
product for use in a safety-related application, the
inspection technique is useful in examining the
allocation of system requirements to software and in
comparing these software requirements to the
capabilities of the COTS product.

All inspections follow a specific process containing
planning, overview, pre-inspection preparation,
inspection, rework, and follow-up phases. The follow-
up phase might consist of a complete re-inspection if
significant rework is required. Specific roles must be
defined for an inspection; a typical team might include
the designer, coder, tester, and a trained moderator.
Additional perspectives of value are those of a code
maintainer, user, standards representative, and
application expert. The actual inspections require
intense concentration and, therefore, are usually
performed on small amounts of material during short
(1- to 2-hour) inspection sessions. Published
experience (Dyer 1992) indicates that 50 to 70 percent
of faults can be removed by the inspection process
(i.e., employing I0, I1, and I2 inspections).

Most discussions of source code inspections focus on
the use of the technique during the development
process. For COTS software, a source code inspection
would be performed well after development and would
involve teams of programmers not involved in the
original development. Therefore, particular attention
should be given to the tasks of developing an effective
checklist and establishing a set of standards specific to
the particular application of the COTS software. Any
standards and checklists that were applied during
development are a good starting point. Myers (1979)

19

Software
Requirements

Software
Requirements
Specification

Software Activity Product Inspection Type

Software
Design

Software Design
Description
(Architecture)

I0 inspection

Software Design
Description
(Detailed)

I1 inspection

CodeImplementation I2 inspection

Figure 2-2. Software Development Activities, Products, and Inspections

gives a set of typical checklist items grouped by data
reference faults, data declaration faults, computation
faults, comparison faults, control flow faults, interface
faults, and input/output faults. This serves as a starting
point; the list should then be enhanced by specific
knowledge about the product and application in
question.

The purposes of performing after-the-development
source code inspections on COTS software are to
detect previously undetected faults, to ensure that
dangerous practices have not been used, to discover
whether undocumented features are present, and to
focus on anything special pertaining to the use of the
COTS application in a specific environment. In
planning for static analysis, strategies should be
developed for applying techniques efficiently given
project resources and constraints (subject to the
requirements of the commercial dedication process).
The entire COTS item should be inspected if possible.
If not, the focus should be directed toward key
functional areas with some additional random
inspections. A powerful practice with any testing or
evaluation technique is to attempt to classify detected
faults or observed failures (such as might have been
seen in other uses of the COTS item) and then to re-
examine the code, searching specifically for other
instances of the fault class.

Establishing standards for a source code inspection of
a COTS item is particularly important. Depending on
the criticality of the particular use of the COTS item, it
may be useful to start with a typical set of standards for

the computer language in question and then to augment
this set with additional standards based on what is
known about the application in which the COTS item
will be used. For example, a code unit might have been
produced according to an established language
standard. It might also be known that certain legitimate
constructs are prone to errors. For the purposes of the
COTS inspection, taking into account the intended use
of the item, a requirement preventing the use of the
construct might be added to the set of coding
standards. In this case, the particular COTS item might
be found unsuitable for the particular intended use. As
an alternative, the discovery of the usage of the
construct might trigger separate static analyses or
dynamic tests focused on that area.

2.5.2. Desk Checking

Desk checking is a proven, primarily manual, static
analysis technique. It typically involves one
programmer examining code listings for faults (code
reading), checking computations by independent
means, and stepping through lines of code. To the
extent possible, desk checking should not consist of
manually performed activities that could be automated.
For example, an automated standards checker could be
run and desk checking could be used to confirm or
justify violations. Desk checking tends to concentrate
on special problems or considerations posed by the
application and involves techniques appropriate to
those problems or considerations. This process can be
aided with the use of interactive debuggers, interactive
analysis tools, or interactive analysis features of

20

software development environments. Regardless of
which tools are used to aid the process, strategy and
procedures must be developed for the systematic
evaluation of the code. In addition to the discovery of
specific faults, the results obtained in desk checking
should also be used to help tailor the standards and
checklists used in future source code inspections.

2.5.3. Automated Structural Analysis

Automated structural analysis is the use of an
automated checker to examine source code for faults
occurring in data and logic structures. An automated
structural analyzer can be focused to detect specific
faults in the code, or can produce general information
about the code, such as cross-reference maps of
identifiers, calling sequences, and various software
quality metrics. Information in the general category is
useful as reference data in the inspection and desk
checking analyses discussed above. An automated
structural analyzer looks for faults such as those listed
below (Glass 1992):

• Undeclared or improperly declared variables (e.g.,
variable typing discrepancies)

• Reference anomalies (e.g., uninitialized or
initialized but unused variables)

• Violations of standards (language and project
standards)

• Complex or error-prone constructs

• Expression faults (e.g., division by zero)

• Argument checking on module invocations
(number of arguments, mismatched types,
uninitialized inputs, etc.)

• Inconsistent handling of global data

• Unreachable or missing logic.

Automated structural analyzers are typically language-
specific and possibly project-specific. Discussions of
some of the techniques used by structural analyzers are
contained in Section 3.4 of this report. Price (1992)
provides information on static analysis tools. Typical
automated tools include:

• Code auditors (standards and portability)

• Control structure analyzers (calling graphs, branch
and path analysis)

• Cross-reference generators

• Data flow analyzers (variable usage)

• Interface checkers

• Syntax and semantic analyzers

• Complexity measurement analyzers.

An approach for performing automated structural
analysis on COTS software would be as follows:

• Determine which software qualities are to be
investigated.

• Determine, if possible, what static analysis
capabilities were applied in the development of
the code (e.g., compiler checks).

• Determine what COTS structural analysis tools are
available for the language used (and particular
language standard if more than one exists) by the
target COTS software.

• Select and apply the appropriate language-specific
tools.

• Determine whether there are project-specific
considerations that should be checked using an
automated structural analyzer.

• Develop and apply the project-specific analyzer (it
may be possible to structure the use of the
capabilities of an interactive analysis tool to get at
these issues).

2.5.4. Other Methods

Various other methods for static source code analysis
have been researched. Some are mentioned briefly here
but are not felt to be practical for the static analysis of
COTS software at this time, either because the
methods are integrated into the development process or
because extensive development work would be
required to implement the method.

Proof of correctness is a process of applying theorem-
proving concepts to a code unit to demonstrate
consistency with its specification. The code is broken
into segments, assertions are made about the inputs and
outputs for each segment, and it is demonstrated that, if
the input assertions are true, the code will cause the
output assertions to be true. Glass (1992) states that the
methodology is not yet developed enough to be of
practical use, estimating that practical value for
significant programs is about 10 years away.
Advantages, if the method is practical, include the use
of a formal process, documentation of dependencies,
and documentation of state assumptions made during
design and coding. Proof of correctness is a complex
process that could require more effort than the
development itself.

Symbolic evaluation is a technique that allows
variables to take on symbolic values as well as numeric
values (Howden 1981). Code is symbolically executed
through a program execution system that supports
symbolic evaluation of expressions. Passing symbolic

21

information through statements and operating
symbolically on the information provides insights into
what a unit is actually doing. This technique requires a
program execution system that includes symbolic
evaluation of expressions and path selection. One

application of this technique would be an attempt to
determine if a formula or algorithm was correctly
implemented.

Automated structural analyzers are usually based on
pre-defined sequences of operations. An extension to
automated structure analyzer capabilities would be to
develop mechanisms whereby user-specifiable
sequences could be defined for subsequent analysis.
Olender (1990) discusses work to define a sequencing
constraint language for automatic static analysis and
predicts its value when embedded in a flexible,
adaptable software environment.

22

23

3. STRUCTURAL TESTING

3.1. Purpose of Structural Testing

Structural testing (also known as “white box” or “glass
box” testing) is conducted to evaluate the internal
structure of a software object. The primary concerns of
structural testing are control flow, data flow, and the
detailed correctness of individual calculations.
Structural testing is traditionally applied only to
modules, although extensions to subsystems and
systems are conceivable. It is generally carried out by
the software engineer who created the module, or by
some other person within the development
organization. For COTS software, personnel from the
development organization will probably not be
available; however, structural testing can be carried out
by an independent test group. The qualities addressed
by structural testing, summarized in Table 1-2, are
discussed below.

3.2. Benefits and Limitations of Structural
Testing

Both the benefits and the limitations of structural
testing are effects of the concentration on internal
module structure. Structural testing is the only method
capable of ensuring that all branches and loops in the
module have been tested. There are important classes
of faults that are unlikely to be discovered if structural
testing is omitted, so no combination of the other test
methods can replace structural testing.

3.2.1. Benefits

Beizer (1990) states that path testing can detect about
one-third of the faults in a module. Many of the faults
detected by path testing are unlikely to be detected by
other methods. Thus path testing is a necessary but not
sufficient component of structural testing. A
combination of path and loop testing can uncover 50 to
60% of the intra-modular faults. Adding data flow
testing results, on average, in finding nearly 90% of
intra-module faults. (It is assumed here that a thorough
testing effort is performed with respect to each
technique.) Some modules, of course, are worse than
average, and the remaining faults are likely to be
particularly subtle.

Structural testing is focused on examining the
correctness of the internals of a module, i.e., on faults
relating to the manner in which the module was
implemented. This includes faults related to accuracy,
precision, and internal consistency. Control flow faults
based on inconsistent handling of conditions can be
found, as well as data inconsistencies related to typing,

file I/O, and construction of expressions. Some
information, such as algorithm timing, can be gained
regarding software performance. Finally, emphasis on
testing proper referencing and data handling as well as
on the implementation of access controls provides
information about integrity and security.

3.2.2. Limitations

Structural testing is impossible if the source code is not
available. The modules must be well understood for
test cases to be designed and for correct results of the
test cases to be predictable. Even moderately large
collections of well-designed modules benefit from the
assistance of reverse engineering tools, test generators,
and test coverage analysis tools. Generating an
adequate set of structural test cases is likely to be quite
time-consuming and expensive.

Structural testing is almost always restricted to testing
modules. Given further research, it might be possible
to extend structural testing to subsystems and systems,
which would be useful for a distributed control system
(DCS). Here, the analogy to the flow of control among
the statements of a module is the flow of control that
takes place as messages are passed among the
processes making up the DCS. When concurrent
communicating processes are executing on a network
of different computers, subtle errors involving timing
can occur, and structural testing might be extended to
help detect these.

3.3. Information Required to Perform
Structural Testing

Structural testing requires detailed knowledge of the
purpose and internal structure of the module: module
specification (including inputs, outputs and function),
module design, and the source code.

A test station is recommended. This station would have
the ability to select pre-defined test cases, apply the
test cases to the module, and evaluate the results of the
test against pre-defined criteria.

3.4. Methods of Performing Structural
Testing

The structural test must be planned, designed, created,
executed, evaluated, and documented.

3.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for structural testing.

24

1. Determine the software qualities that are being
evaluated. For the structural testing of safety-
related COTS software, the primary quality of
interest is correctness, particularly in the sense of
accuracy, precision, robustness, and internal
consistency.

2. Determine which structural testing techniques will
be required. Control flow (path) and data flow
testing are the minimum requirements. Additional
techniques may be required in some cases.

3. Determine what resources will be required in
order to carry out the testing. Resources include
budget, schedule, personnel, equipment, test tools,
test station, and test data.

4. Determine the criteria to be used to decide how
much testing will be required. This is a stopping
criterion—how much testing is enough? For
example, “95% of all paths in the module shall be
covered by control flow testing.”

5. Determine which modules will be tested.

3.4.2. Test Design and Test Implementation

The following actions are required to design and
implement structural testing.

1. Create procedures for executing the structural test
cases. This is typically done within the context
created by test plan and test design documents
(IEEE 829). Additional guidance for the testing
process for modules is given in IEEE 1008.

2. Create individual test cases. Each test case should
contain the following information:
a. Test identification. Each test case must have a

unique identifier.

b. Purpose. Each test case should have a specific
reason for existing. Examples include
executing a specific path through the module,
manipulating a specific data object, or
checking for a specific type of fault. For the
latter, see headings 3 and 4 of the Bug
Taxonomy in the Annex.

c. Input data. The precise data required in order
to initiate the test must be specified.

d. Initial state. In order to reproduce a test case,
the initial state of the module (before the test
begins) may need to be specified. This
information is not necessary if the module is
intended to execute correctly and identically
in all initial states. For example, a square root
module should return the square root of the
input value no matter what has gone before.

e. Test results. The expected results of the test
must be known and specified. These can
include values of data objects external to the
module (such as actuator values and database
values) and values of output parameters
returned through the module calling interface.

f. Final state. In some cases, the final state of
the module must be specified as part of the
test case information. This can occur, for
example, if the final state after a call is used
to modify the execution of the module the
next time it is called.

3. Create the test station. This is a mechanism for
selecting, executing, evaluating, and recording the
results of tests carried out on the module. Test
station components, illustrated in Figure 3-1,
include:
a. Test case selection. A means of selecting test

cases to be executed. Test case information is
typically kept in a file or database, and the
selection may simply consist of “get next test
case.”

b. Test program. A means of setting the
module’s initial state (if necessary), providing
input to the module, recording the output
from the module and (if necessary) recording
the final state of the module.

c. Test oracle. A means of determining the
correctness of the actual output and module
state.

d. Results database. A means of recording the
test results for future analysis and evaluation.
Typical data are: test identifier, date, version
of module being tested, test output and state,
and an indication of correctness or failure of
the test.

3.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the results
analyzed. If discrepancies between the actual and
expected results occur, there are two possibilities:
either the test case has a fault or the module has a fault.
In the first case, the test case should be corrected and
the entire test procedure rerun.

If the module has a fault and the development
organization is performing the test, the programmer is
expected to correct the fault. The pattern of test–fix–
test–fix continues until all discrepancies have been
resolved.

25

Input Output

Correctness

Results
Database

Test
Case

Test Case
Selection

Test Case
Database Test

Oracle

Test
Program

Software
Object

Source
Code

Test Case
Generator

Figure 3-1. Typical Test Station Components for Structural Testing

In the case of COTS, obtaining corrections may be
very difficult. Suppose the test is being performed by
(or on behalf of) the customer. If the software was
developed for the customer under contract, there
should be considerable leverage for obtaining
corrections. If the software is a consumer product (for
example, a library accompanying a compiler used for
development), experience shows that many developers
have little interest in expensive repairs that satisfy a
limited marketplace. In this case, the options of the
customer may be simply to reject the software or to
evaluate each fault detected by the testing and
determine its effects on safety. If more than one fault
exists, the cumulative effect of all the faults on safety
must also be determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related to
new requirements arising from the specific, intended
application of the COTS product. They might also be
minor faults that might reasonably have escaped
detection during product development. In these cases,
the significance of the faults should be evaluated and
the options for obtaining corrections might be pursued.
However, if one or more serious faults pertaining to
the product itself are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

3.5. Discussion of Structural Testing

A brief summary of several structural testing methods
is given here. The material in this section is based
largely on Beizer 1990; see that reference for detailed
tutorials. Note also that domain testing and logic
testing (discussed in Section 4) are structural testing
techniques if applied to a software object’s
implementation instead of to its specifications.

3.5.1. Control Flowgraphs

Structural testing methods generally make use of a
control flowgraph of the module being tested. This is
an abstraction of the module in the form of a directed
graph which captures only the properties of the module
which are being tested. Control flowgraphs are defined
(informally) as follows:

• A block of statements which do not involve
control transfer in or out except from one to the
next are replaced by a simple node of the control
graph:

• A branch statement (IF statement) is replaced by a
node representing the branch predicate with one
edge for each outgoing branch:

26

• A junction is represented by a node with two
incoming edges:

• A loop statement (DO, WHILE, FOR) is replaced
by its component initialization–increment–test
parts.

Figure 3-2 shows a (nonsensical) sample module.
Figure 3-3 is the corresponding flowgraph. Each node
is numbered; the numbers are repeated in the program
listing in Figure 3-2. (They are for annotation only, not
part of the module.)

Begin module 1

L2: x = x + 1 2

y = 7

L3: if z < 4 3

then x = 2*x 4

else x = x – 1 5

if z = 0 then go to L2 6

if y = x - z then go to L3 7

if z = 2*z 8

then y = y - 1 9

w = 2*x

else if z < 2 then go to L2 10

end module 11

Figure 3-2. Example of a Program

A link is defined to be an edge of the flowgraph—it
represents transfer of control from one block of code to
another. A segment is a sequence of nodes and links—
for example, in Figure 3-3, the progression through
nodes 2, 3, 4, 6, and 7 is a segment. A path is any
segment from the initial node of the module to the
terminal node. The path contains a loop if any node is
repeated. The length of the path is the number of links
on the path. The number of paths is the number of
distinct paths. For all but the simplest module, there
are a large number of paths (a path with one iteration
of a loop is distinct from the same path but with two
loop iterations).

3.5.2. Control Flow (Path) Testing

Path testing is aimed at discovering software faults
existing in the flow of control within a module; it does
not address calculations within the module except for
those calculations that affect the flow of control. It is
assumed in this discussion that the module is written in
a third-generation programming language (such as C,
Pascal, or Ada), has a single entry point, and has a
single exit point.8 See Beizer 1990 for extensions to
assembly language modules.

Execution of a module consists of the execution of a
path within the module. Different inputs to the module
may cause different paths to be executed. In the
languages being considered, statements fall into several
sets: arithmetic, branches, and loops. Branches usually
consist of IF, CASE, GOTO and RETURN statements.9

Loops usually consist of DO (or FOR) and WHILE
statements, plus GOTOs that return control to a
previously executed statement. Any path that contains
the same statement more than once has a loop.

The completeness of control flow testing is referred to
as test coverage. Two criteria for coverage
measurements are statement coverage and branch
coverage. Statement coverage requires that every
statement in the module be executed at least once (also
called node coverage). In Figure 3-3, 100% node
coverage is achieved if all nodes are executed at least
once. Since it is possible to cover all nodes without
covering all links (for example, in Figure 3-3 a set of
paths can be established to cover all nodes without
traversing links such as 10–2 and 7–3), statement
coverage is a very weak criterion that is never
sufficient in safety-related applications.

Therefore statement coverage will not be discussed
further. Branch coverage requires that the set of test
cases cause every statement, every alternative of every
branch, and every loop statement to be executed.

Methods (mostly heuristic) exist to create a reasonable
number of test cases that include all statements and all
branches (Beizer 1990). These are beyond the scope of
this report. The module may need to be instrumented
(modified by inserting code) so that evidence can be
obtained to ensure that each test case performs as

8 Note that multiple RETURN statements within the module do not
constitute separate exit points, since they can be easily modified to
single formal exit points without change in correctness.
9 Syntax varies among languages—the forms used here are typical.

27

1 2 3

4

5

6 7 8 9

10

11

ENTRY EXIT

Figure 3-3. Flowgraph Corresponding to the Module in Figure 3-2

predicted. The internal state of the module (values of
local variables) may also need to be examined to verify
test case results.

3.5.3. Loop Testing

A loop occurs whenever a node is repeated in a path.
This includes both well-structured and ill-structured
loops; examples of both are shown in Figure 3-4.

Loop testing assumptions are similar to path testing
assumptions. It is assumed that faults exist only in the
flow of control around loops—there are no calculation
faults or branch faults. It is assumed that the module
specifications are correct and achievable. It is assumed
that data used in the module is correctly defined and
accessed.

Faults in loops tend to occur around the minimum and
maximum number of iterations that are possible.
Consider the loop statement

for n = 1 to k do {...}

where 1 ≤ kmin ≤ k ≤ kmax < ∞;
kmin and kmax fixed

(kmin and kmax are the minimum and maximum
possible values of k.)

Loop testing consists of attempting to create test cases
that force the numbers of iterations executed to take on
values “near” both kmin and kmax, i.e., to create test
cases that force the loop to execute typically one
iteration more and less than either the lower limit,
kmin, or the upper limit, kmax. In the example above,
test cases should force “zero” iterations of the loop and
compare actual results to the expected behavior of the
software object (see Figure 3-5).In many cases, not all
of these choices are possible. If the minimum number
of iterations is zero (kmin = 0), one can hardly force
kmin – 1 = –1 iterations. If there is no hard upper

bound on kmax, the cases involving kmax are not
possible.

Nested loops generally require all combinations of
these choices for each nested loop. One loop has eight
cases; two nested loops, 64; three nested loops, 512.
Beizer suggests methods to reduce this number
considerably, but such reductions should be subjected
to a thorough analysis and used with great caution in
safety-related applications.

Intertwining loops such as those shown in the bottom
of Figure 3-4 require much more care and ingenuity to
test adequately. It is far preferable to forbid the use of
these loops if that option exists.

3.5.4. Data Flow Testing

Data flow testing is directed toward finding errors in
the manipulation of data. This includes all types of
data—program variables, sensor and actuator data,
database data, and file data. Databases and files can be
considered to be data, as well as the records in them.

Beizer defines four ways data can be manipulated. The
exact meaning varies among the types of data.
Symbols and meanings are shown in Table 3-1.

Data flow is analyzed by examining the way each data
element in the module is used along each path in the
control flowgraph. Sequences of the letters d, k, and u
are used to record the ways the data is used. For
example, consider data element x in the example of
Figure 3-2. The variable x is manipulated in some way
in each of the nodes 2, 4, 5, 7 and 9. In Figure 3-6, the
usage of variable x is shown on the outlink of each
node in which x is used in some way. Consider the
usage of data element x on path 1-2-3-4-6-7-8-9-11 in
Figure 3-6. The progression of usages of variable x on
this path is represented by the string ‘ududuu.’ Note
that if x is a local variable, an anomaly is indicated by
the first ‘ud’ in that x is used before the first definition.
This is shown in the second line of the example
program in Fig. 3-2.

28

Intermingled Loops

Nested Loops

Figure 3-4. Examples of Loops in Flowgraphs

Legitimate Number of Iterations
Expected During Execution

Number of Iterations Attempted in Testing

-1 +1

Kmax

-1 +1

Kmin

+2

Figure 3-5. Test Cases in Loop Testing

29

Table 3-1. Data Flow Testing Symbols and Meanings

Symbo
l

Meaning Definition

d Defined A program variable is defined when it is initialized in a declaration
statement or is given a value in an assignment statement. A file is
defined by being opened. A record is defined by being read.

k Killed A local variable is killed in block-structured programming languages
when the containing procedure is exited. A file is killed when it is
closed. A record in a file is killed when it is deleted. A record in a
memory buffer is killed when the buffer is cleared.

c Computation
use

A program variable is used in a computation if it appears on the right-
hand side of an assignment statement or as part of a pointer
calculation.

p Predicate use A program variable is used in a predicate if it appears in the predicate
portion of an IF, CASE, or WHILE statement.

u Used A variable is can be described as “used” if it is used in a computation
(c) or in a predicate (p).

Analysis of data flow consists of examining the
possible ways in which data may be used.
Consideration is given to anomalous situations related
to single usages of data items or to pairs of usages of a
data item. Notation for single data item usages is of the
form: -d, -u, -k, d-, u-, or k-, where the ‘-’ means that
nothing of interest regarding the data item is occurring
on the path before or after the indicated usage type.
Pairs of usages of a data item are indicated by a two-
character string such as du or dk.

Fifteen combinations of single or paired usage are
possible, and can be classified as follows:10

• The following combinations are considered
normal: –d (the first definition on the path), k–,
du, kd, ud, uk, and uu.

• The following combinations are suspicious, and
should be investigated to be sure the usage is
intended and is correct: –k, –u, d–, u–, dd, dk,
and kk.

• The following combination is always a fault: ku.

Data flow testing requires the creation of test cases that
cover these potential manipulations of data (i.e., that
test the various calculations and variable usages). They
are based on the module’s control flowgraph, and
should be considered as tests added to branch and loop
tests. A number of such tests suites have been
described in the literature, but are generally
insufficient

10 Recall that nCr = n!/[r!(n–r)!], so it can be shown that the
following number of combinations is possible: 5C1 + 5C2 = 5 + 10
= 15 ways.

for safety-critical software. The recommended form is
called the ‘all-uses’ strategy, and can be stated very
simply:

“There must be at least one test case for at
least one path from every definition of every
variable to every use of that definition.”

Starting from the test cases already defined for branch
and loop testing, consider the variables manipulated by
the module one at a time. For each variable x, find all
definitions of x and all uses (‘c’ or ‘p’) of x. For each
definition, locate all ‘c’ and ‘p’ uses of that definition.
For each such use, find a path on the control flowgraph
from that definition to the use which does not include
new definitions or kills. In many cases, an existing test
case will be sufficient, since branch test cases and
previous data flow test cases are likely to include the
new data flow case.

In Figure 3-6, for variable ‘x,’ definitions occur in
nodes 2, 4, and 5. The definition in node 2 is used in
both nodes 4 and 5, while each of the definitions in
nodes 4 and 5 are used in nodes 7 and 9. The latter two
paths are included in the former, so only two paths are
required here to cover all definitions/usage pairs: 1-2-
3-4-6-7-8-9-11 and 1-2-3-5-6-7-8-9-11. In most cases,
of course, many more paths would be required,
including some which were not included in the control
flow paths.

30

1

11

9

10

86

5

4

32 7
ud

ud

ud

u

u

Figure 3-6. Control Flowgraph Augmented to Show Data Flow

31

4. FUNCTIONAL TESTING

4.1. Purpose of Functional Testing

Functional testing (also known as “black box” testing)
consists of testing the functions to be performed by a
software element as defined in requirements, design
specifications and user documentation. It is focused on
comparing actual and specified behavior, independent
of the structural characteristics of the software. The
primary concerns are functional and timing
requirements. Programs, subsystems and systems are
tested in large part with functional tests, however,
functional tests also apply to packages and modules.
Although, structural testing and static analyses are the
dominant testing strategies for at these levels, the
design specifications for packages and modules should
contain information on which to base functional tests.
This is particularly true for software elements such as
communications packages, device drivers, and
mathematical subroutines. For COTS software,
functional testing is likely to be applied to programs,
subsystems and systems, and will normally be carried
out by or on behalf of the customer. The qualities
addressed by functional testing, summarized in Table
1-2, are discussed below.

4.2. Benefits and Limitations of Functional
Testing

Both the benefits and limitations of functional testing
are a result of the fact that the execution of functions is
examined rather than the internal structure of the
software object. The focus is on verifying that
requirements and user needs have been met. Functional
testing can be applied at any level but is usually
associated with programs, subsystems, and systems.

4.2.1. Benefits

Since the focus is not on internal software structure, it
is easier for functional testing to be performed by
independent parties. Test cases may originate with the
customer, user, or regulator. For COTS software, test
cases might also originate from information gathered
from the experience of other users of the item. Finally,
functional testing techniques do not require the
availability of source code, which, for COTS software,
may not be available.

Functional testing techniques can address a wide range
of software qualities. Test cases for functional testing
techniques address technical correctness by allowing
verification of the accuracy and precision of results as
well as verification of the consistency, interoperability,
and performance of the software item. Consistency and

interoperability are addressed by examining the
interactions among modules as transactions are
processed. Performance is addressed via test cases
focused on timing requirements for real-world
transactions. Regarding the correctness of a software
item in the sense of its being complete, acceptable, and
valid, test cases can focus on missing or partially
implemented transactions, improper handling of real-
world conditions and states, and incorrect
representations of user needs and the real-world
environment. Functional test cases can also be
designed to test security and integrity mechanisms,
user interfaces, and robustness in the presence of
invalid inputs.

4.2.2. Limitations

Functional testing usually does not detect
undocumented features or functions such as
development aids left in the software. Since testers
have no visibility into internals, functional subtleties
may be overlooked, particularly if structural testing has
not been performed.

4.3. Information Required to Perform
Functional Testing

Functional testing requires a software requirements
specification, user instructions, detailed knowledge of
external interfaces (to sensors, actuators, operators, and
other software), and the software object being tested.

A test station is recommended for testing by
customers. This includes the ability to select pre-
defined test cases, apply the test cases to the software
object, and evaluate the results of the test against pre-
defined criteria. The ability to reproduce functional
testing will generally be necessary, and a test station is
the most effective tool to accomplish this.

4.4. Methods of Performing Functional
Testing

The functional testing must be planned, designed,
created, executed, evaluated, and documented.

4.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for functional testing.

1. Determine the software qualities that are being
evaluated. For safety-related COTS software, the
primary quality of interest is correctness. In a
technical sense, this encompasses accuracy,

32

precision, consistency, interoperability, and
performance. From a product perspective,
correctness includes acceptability, completeness,
and validity. Other qualities that can be addressed
are integrity, security, robustness, usability, and
user friendliness.

2. Determine which functional testing techniques
will be required. Transaction testing and domain
testing are minimal requirements. Additional
techniques should be employed if the goal of the
technique is applicable to the software object.

3. Determine what resources will be required in
order to carry out the testing. Resources include
budget, schedule, personnel, equipment, test tools,
test station, and test data.

4. Determine the criteria to be used to decide how
much testing will be required. This is a stopping
criterion—how much testing is enough?

5. Determine which software objects will be tested.

4.4.2. Test Design and Test Implementation

The following actions are required to design and
implement functional testing.

1. Create procedures for executing the functional test
cases.

2. Create individual test cases. Each test case should
contain the following information:
a. Test identification. Each test case must have a

unique identifier.

b. Purpose. Each test case should have a specific
reason for existing. Examples include
verifying that a particular timing constraint
can be met, that a particular function is
performed correctly, or checking for a
specific type of failure. For the latter, see
headings 1 and 2 of the Bug Taxonomy in the
Annex.

c. Input data. The precise data required in order
to initiate the test must be specified.

d. Initial state. In order to reproduce a test case,
the initial state of the software object (before
the test begins) may need to be specified. This
information is not necessary if the object is
intended to execute correctly and identically
in all initial states. For example, a transaction
processing program should correctly handle
any transaction no matter what has gone
before.

e. Test results. The expected results of the test
must be known and specified. These are the

values of data objects external to the software
object under test (such as actuator values,
display screen values, and database values).

f. Final state. In some cases, the final state of
the object must be specified as part of the test
case information.

3. Create the test station. This is a mechanism for
selecting, executing, evaluating, and recording the
results of tests carried out on the object. Test
station components, illustrated in Figure 4-1,
include:
a. Test case selection. A means of selecting test

cases to be executed. Test case information is
typically kept in a file or database, and the
selection may simply consist of “get next test
case.”

b. Test program. A means of setting the object’s
initial state (if necessary), providing input to
the object, recording the output from the
object, and (if necessary) recording the final
state of the object.

c. Test oracle. A means of determining the
correctness of the actual test output and object
state.

d. Results database. A means of recording the
test results for future analysis and evaluation.
Typical data include the test identifier, date,
version of object being tested, test output and
state, and an indication of correctness or
failure of the test.

4.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the results
analyzed. If discrepancies between actual and expected
results occur, there are two possibilities: either the test
case has a fault or the object has a fault. In the first
case, the test case should be corrected and the entire
test procedure rerun.

If the object has a fault and the development
organization is performing the test, the programmer is
expected to correct the fault. The pattern of test–fix–
test–fix continues until all discrepancies have been
resolved.

In the case of COTS software, obtaining corrections
may be very difficult. Suppose the test is being
performed by (or on behalf of) the customer. If the
software was developed for the customer under
contract, there may be considerable leverage for
obtaining corrections. If the software is a consumer
product (for example, a library accompanying a

33

Input Output

Correctness

Results
Database

Test
Case

Test Case
Selection

Test Case
Database Test

Oracle

Test
Program

Software
Object

Test Case
Generator

Software Object
Requirements

Figure 4-1. Typical Test Station Components for Functional Testing

compiler used for development), experience shows that
many developers have little interest in expensive
repairs that satisfy a limited marketplace. In this case,
the options of the customer may be simply to reject the
software or to evaluate each fault detected by the
testing and determine its effects on safety. If more than
one fault exists, the cumulative effect of all the faults
on safety must also be determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related to
new requirements arising from the specific, intended
application of the COTS product. They might also be
minor faults that might reasonably have escaped
detection during product development. In these cases,
the significance of the faults should be evaluated and
the options for obtaining corrections might be pursued.
However, if one or more serious faults pertaining to
the product itself are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

4.5. Discussion of Functional Testing

There are a number of techniques for developing
functional tests. A summary of several of these is
given below and is based largely on Beizer (1990); see
that reference and Howden (1987) for detailed
information.

4.5.1. Transaction Testing

A transaction is a complete unit of work as seen by the
operators of the computer system. An example is
changing the value of a set point. The operator
normally views this as a simple action—entering a
value on a display screen causes the value to change,
resulting in a change to some other portion of the
screen. In fact, many processes may be invoked on
multiple computers to carry out the action, but none of
the details are of interest to the operator.

Transaction testing is similar to control flow testing
(Section 3.4.2) in that it is based on a flowgraph. It
differs from control flow testing in that the flows in
transaction testing are derived from the requirements
specification, while the flows in control flow testing
are derived from the program internal structure.
Transaction testing is carried out at the program,
subsystem, or system level instead of the module level.
Nodes on the flowgraph represent processes that act on
the transaction, while the links on the graph represent
the movement of transaction data from one process to
another. Note that a transaction flowgraph does not
necessarily match program control flow. An example
is shown in Figure 4-2.

34

Exit
Report

ExecutiveExecutive

Queue
Report

Run
Report

Entry for
Report

Executive Accept Rpt
Parameters

Validate
Parameters

Figure 4-2. Example of a Transaction Flowgraph

Transactions typically are born (created) as a result of
some triggering action, exist for some period of time,
and then die. Each transaction can be modeled by a
transaction flowgraph, and there is a separate graph for
each transaction. Some computer systems involve
hundreds of transactions, resulting in a large supply of
graphs. Alternative flows on the graph may exist to
handle errors and peculiar conditions. Transactions
may “spawn” additional transactions, and multiple
transactions may collapse into a single one. The
resulting flow can be quite complex.

Transaction testing assumes that the processing within
each node of the flowgraph is correct, but that there
may be errors in routing transactions from one node to
another. A test must be created for every path from
transaction birth to transaction death. Particular
attention must be devoted to paths caused by errors,
anomalous data or timing, or other strange events.

4.5.2. Domain Testing

A program can frequently be viewed as a function
transforming input values to output values. Programs
generally operate on more than one input variable, and
each adds a dimension to the input space. The
collection of all input variables determines a vector,
known as the input vector. An example might be

(temperature, pressure, neutron flux, on/off switch,
valve position)

where the first three are assumed to be read from
sensors and the last two read from an operator console.
Domain testing divides the input vector values into
sets, called domains, where the program behaves the
same for all values in the set.

An example of a specification for a control function
based on a single variable, temperature, might take the
following form (the errors are deliberately included for
illustrative purposes):

if temp < 0 error

if 0 < temp < 50 turn on heater

if 50 ≤ temp < 80 turn off both heater and cooler

if 75 < temp < 150 turn on cooler (this is assumed
to be a specification error, i.e.,
assume the requirements call
for shutdown at 120)

if 150 < temp emergency shutdown (this is
assumed to be a specification
error, i.e., assume the
requirements call for shutdown
at 120)

In this example (illustrated in Figure 4-3), there are
five domains, with boundaries at 0, 50, 80, and 120.
The boundaries are typically points in the input space
at which a new rule applies. The calculations are
assumed to be correct for all values in each set, and
faults are sought at or near the boundaries of the
domain. Several errors are shown in the example:

• It is not known how the program should respond
for temp = 0 and temp = 150.

• There are inconsistent requirements for 75 < temp
< 80 since the domains overlap.

• The problem statement requires (it is assumed
here) emergency shutdown at 120, not 150.

35

Temperature

Domain 4:
Turn on cooler

)(

Domain 5:
Emergency shutdown

(

) Domain 1: Error

() Domain 2: Turn on heater

() Domain 3: Turn off heater
& cooler

150750 50 80 120

Figure 4-3. Example of Domains

Domains can be drawn and analyzed manually for one
or two variables. Real-time control system software
generally requires more than two sensors and operator
signals, so the application of domain testing can be
impractical unless automated tools can be found.11

Test cases for domain testing are concentrated at or
very near the boundaries of each domain. Figure 4-4
shows hypothetical two-dimensional input spaces,
where the shaded areas represent anticipated input
values. The asterisks show a few of the possible test
input values. If test cases are based on code
implementation rather than specifications, domain
testing is considered to be a structural technique.

Howden (1981) points out that techniques for
examining classes of input data can also be applied to
the examination of classes of output data. In cases
where classes of output data are related to classes of
input data, selecting input data to produce output at the
boundaries of the output classes can yield useful
results. In addition, it is also useful to consider invalid
output data and to attempt to generate this output with
selected inputs. This approach is closely related to the
use of fault tree analysis.

4.5.3. Syntax Testing

The syntax of external inputs, such as operator or
sensor inputs, and internal inputs, such as data crossing
interfaces between subsystems, must be validated. In
addition to the well-documented input syntax that may
be described in the requirements and design

11 A reviewer pointed out that he was unaware of the use of domain
testing in real-time systems.

specifications, it is also necessary to examine the
software object for implicit, undeclared languages.
These may be found in areas such as user and operator
command sets, decision logic relating to transaction
flows, and communications protocols. Sources for this
information include requirements and design
documentation, manuals, help screens, and developer
interviews. Items relating to hidden languages should
be included on code inspection checklists (see Section
2). For defined or hidden languages, the syntax must
be defined with a tool such as BNF and a set of syntax
graphs must be created on which to base test cases for
various syntactic constructions. Figure 4-5 shows a
trivial example of a syntax graph. A sentence would be
formed based on the syntax graph by following a path
indicated by the arrows, making legitimate
substitutions when rectangles are encountered, and
inserting literally the contents of the circles. Thus,
PAUSE; and PAUSE{5}; would be legitimate
constructions.

Testing consists of supplying a combination of valid
and invalid constructions as inputs. Types of faults
discovered with syntax testing relate to cases where
valid constructions are not accepted, invalid
constructions are accepted, or where the handling
mechanisms for valid or invalid inputs break down.
Beizer (1990) notes that the invalid constructions lead
to the biggest payoffs in this type of testing. Fairly
simple syntax rules can lead to very large numbers of
possible test cases, so automated means must be used
to accomplish the testing.

36

* * *

**

*

*
*
*

*

*
*

*

*

*

*

*
*

*

Figure 4-4. Examples of Two-Dimensional Domains with Examples of Test Values

Identifier ;

Expression{ }

Figure 4-5. Example of a Syntax Graph

4.5.4. Logic-Based Testing

Some applications or implementations must deal with
situations in which the values of a number of
conditions must be evaluated and appropriate actions
taken depending on the particular mix of condition
values. If these situations are derived from system
requirements, they are functional issues; if they are the
result of the design approach, they are structural issues.
Functional logic-based testing consists of testing the
software system’s logic for handling these mixes of
conditions. In addition to the correctness of the logic,
software quality factors of completeness and internal
consistency are also addressed.

Decision tables can be an effective means for
designing test cases to examine software logic. This
logic might be explicitly documented using techniques
such as decision tables or decision trees, or might be
implicit in the software requirements or design
specifications. In the latter case, the sources for
obtaining information are the same as for syntax
testing. The cause–effect graphing technique can be
applied to transform this information into decision

table format; an example is provided in Pressman
(1987).

An example of a limited entry (conditions and actions
are binary valued) decision table is shown in Figure 4-
6. A detailed discussion of decision tables can be
found in Hurley (1983). A rule consists of the actions
to be followed when the specified conditions hold.
Note that the rule corresponding to conditions (Y,Y,Y)
is missing, possibly corresponding to an impossible
physical situation. The dash in rule 4 means that the
value of condition 3 is immaterial for this rule (i.e.,
rule 4 represents two cases, N,Y,Y and N,Y,N).

Testing based on this decision table should begin with
a verifying the completeness and consistency of the
table (see Hurley, 1983). Then test cases should be
developed to ensure that the software performs the
correct actions for the specified rules. It should be
verified, by attempting to design a test case, that a
(Y,Y,Y) situation is indeed impossible, and both
options for rule 4 should be tested to ensure that the
same action is taken.

37

RULES

1 2 3 4 5 6

Condition 1 Y Y Y N N N
Condition 2 Y N N Y N N
Condition 3 N Y N - Y N

Action 1 X
Action 2 X X X
Action 3 X X
Action 4 X X X X

Figure 4-6. Example of a Decision Table

The use of a decision table model for designing tests is
appropriate when the following requirements hold
(Beizer 1990):

• The specification consists of, or is amenable to, a
decision table .

• The order of condition evaluation does not affect
rule interpretation or resulting actions.

• The order of rule evaluation does not affect
resulting actions.

• Once a rule is satisfied, no other rule need be
considered.

• If multiple actions can result from a given rule, the
order in which the actions are executed does not
matter.

4.5.5. State Testing

Testing based on state-transition models is effective in
examining a number of areas including communication
protocols, failure and recovery sequences, and
concurrent processing. Figure 4-7 illustrates a state
transition diagram with three states indicated by boxes
and three transitions indicated by arrows. The trigger
for the state change (input or event) is shown in the top
part of the transition label and the action or output
associated with the transition is shown in the bottom
part of the label. (Note that state-transition models can
be depicted with other notation, such as state tables.)
For each input to a state, there must be exactly one
transition specified; if the state doesn’t change, a
transition is shown to and from the same state.

Faults can be associated with an incorrect structure for
a state-transition model or with a structurally correct
model that does not accurately represent the modeled
phenomena. In the former category, faults can be
related to conditions such as states that cannot be
reached or exited or the failure to specify exactly one
transition for each input. These types of faults can be
detected from a structural analysis of the model. In the
latter category, faults can be related to conditions such
as states missing from the model, errors in the
specification of triggering events, or incorrect
transitions. Detection of these errors involves the
analysis of, or testing against, specifications. Missing
states can arise from incorrect developer assumptions
about possible system states or real world events.
Errors in modeling triggering events or associated
outputs can easily arise from ambiguities contained in
system or software requirements. For embedded COTS
software, states of the software itself or states related
to the interface of the software to the larger system
may need to be modeled as a basis for analysis and
testing.

To perform state testing, it is first necessary to develop
correct state-transition diagrams for the phenomena
being investigated. An analysis should be made to
verify that the state-transition model is consistent with
the design and that the model to be used is structurally
correct. Design errors might be indicated by this
analysis. Following this analysis, a set of test cases
should be developed that, as a minimum, covers all
nodes and links of the diagrams. Test cases should
specify input sequences, transitions and next states,
and output sequences.

38

System OK System Hot System Off

Temp > 150

Alert

Temp > 200
Shutdown

Temp < 150

Clear Alert

Figure 4-7. Example of a State Transition Diagram

State testing is recommended in the following
situations (see Beizer 1990):

• Where an output is based on the occurrence of
sequences of events

• Where protocols are involved

• Where device drivers are used

• Where transactions can stay in the system
indefinitely

• Where system resource utilization is of interest

• Where functions have been implemented with
state-transition tables

• Where system behavior is dependent upon stored
state.

39

5. STATISTICAL TESTING

5.1. Purpose of Statistical Testing

Statistical testing is conducted to measure the
reliability of a software object or to predict its
probability of failure, rather than to discover software
faults. It consists of randomly choosing a sample of
input values for the software object and then
determining the correctness of the outputs generated
from those inputs. Obtaining a statistically valid
reliability measure using this testing strategy requires
that the following assumptions hold:

1. The test runs are independent.

2. For each input, the chance of failure is constant.
That is, the probability of failure is independent of
the order in which samples are presented to the
software object, and of the number of samples that
precede the specific input.

3. The number of test runs is large.

4. All failures during testing are detected.

5. The distribution of the inputs under real operating
conditions is known.

The qualities addressed by statistical testing are
availability and reliability.

It is possible to use statistical testing for the goal of
finding failures (random testing). That is, one runs
randomly selected tests in the hopes of finding failures.
This is likely to be less efficient than the other, more
directed, forms of testing. Of course, if failures do
happen during statistical testing, the faults should be
found and corrected. See Hamlet (1994) for a
discussion of random testing.

5.2. Benefits and Limitations of Statistical
Testing

5.2.1. Benefits

Statistical testing does not rely on any knowledge of
the internal composition of the software object, so it
can be carried out whether or not such knowledge
exists. It is the only way to provide assurance that a
specified reliability level has been achieved. Statistical
testing (as discussed here) is less prone to human bias
errors than other forms of testing. It is a practical
method in many cases when moderate-to-high
reliability (in the range of 10-4 to 10-5 failures per
demand) is required.

Statistical testing addresses the reliability quality by
estimating probabilities based on large numbers of
tests. Reliability information also provides information
regarding potential availability, although it does not
address external factors, such as system loads or
administrative procedures, that may affect accessibility
when a particular capability is needed.

5.2.2. Limitations

A number of practical issues with statistical testing
limit its usefulness in some instances. The first set of
issues relates to the test planning and test station (see
below). The most difficult of these issues are
frequently the construction and verification of the test
oracle. Determining the operational profile may be
nearly as difficult.

The second set of issues involves the length of time
necessary for testing. Testing to the level of reliability
required for a typical safety-critical process control
system should be feasible, but testing to much higher
levels of reliability is not. (See the discussion of
expected test duration in section 5.4.2.)

The third set of issues concerns the relationship
between safety and reliability. Statistical testing
provides a reliability number, not a safety number.
Since inputs with safety implications should be a very
small percentage of all possible inputs, it is not likely
that random testing will include many safety-critical
input cases. In such cases, it may be possible to carry
out two series of tests: one based on all possible input
cases, and one based only on safety-critical input
cases. This would result in two numbers—an overall
reliability figure and a safety-related reliability figure.
The latter could be reasonably termed a safety
reliability number. This approach does, however,
require that the set of safety-critical input events be
completely understood so that the safety-critical input
space can be completely and accurately characterized.
This may be difficult to accomplish.

5.3. Information Required to Perform
Statistical Testing

Statistical testing requires no knowledge of the internal
composition or structure of the software object being
tested. It does require a good understanding of the
statistical distribution of inputs which can be expected
to appear during actual operating conditions (the
operational profile). A test platform is required, which
includes the ability to generate random tests using the
operational profile, the ability to carry out each test on
the software object, and the ability to evaluate the

40

results for correctness. Since many thousands of tests
are required in order to obtain a valid reliability
number, the test platform must be automated.

5.4. Methods of Performing Statistical
Testing

The statistical test must be planned, designed,
implemented, executed, evaluated, and documented.
The following steps (or their equivalent) must be
carried out.

5.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for statistical testing. Statistical testing
focuses on the reliability quality of software. For
safety-related COTS software, the goal of statistical
testing is to provide a measure of the item’s reliability
given its anticipated operational profile (i.e., given the
specific role that the COTS item will play in the
safety-related system). The software qualities of
interest for statistical testing are reliability and
availability.

1. Determine the level of reliability to be achieved.
This is generally given in terms of the maximum
acceptable failure rate—for example, that the
failure rate cannot exceed 10-5 per demand.

2. Determine if failures will be tolerated. A statistical
test will be carried out for some period of time,
recording all failures. At some point, the number
of failures may be so large that the test will be
stopped and the software object rejected. If the test
is to be statistically valid, this point must be
determined during test planning. For reactor
protection systems, the objective should be to
carry out the test without failure. In this case, any
failure will cause the test to stop, the fault to be
corrected, and the test to be completely rerun.
When a statistical test is re-run, it is crucial that
the random numbers selected be independent of
sequences previously used.

3. Determine the degree of statistical confidence
which will be required in the test results. This will
be given as a percentage—for example, .99.

4. Determine what resources will be required in
order to carry out the testing. Resources include

budget, schedule, personnel, equipment, test tools,
test station, and test data.

5. Determine which software objects will be tested.

5.4.2. Test Design and Test Implementation

The following actions are required to design and
implement statistical testing.

1. Calculate the number of test cases which must be
carried out without failure to achieve the specified
reliability with the specified confidence level.

The number of test cases, n , is given by the following
formula, where f is the failure rate and c is the
confidence level (Poore, Mills, and Mutchler 1993):

n = log(1 − c)
log(1 − f)











Table 5-1 shows approximate values of n for various
values of c and f . In this table, ‘M’ stands for
‘million.’ This table shows that increasing the required
level of confidence in the test results can be obtained
with relatively little extra effort. However increasing
the required level of reliability (decreasing the failure
rate) that must be demonstrated requires considerably
more test cases to be executed and consequently
increases test time.

Given a required number of test cases and an
assumption about the average number of test cases that
can be carried out per unit time, estimates can be made
of the total time that will be required for test execution.
Table 5-2 shows the approximate amount of execution
time required to achieve specified failure rates at the
.99 confidence level under two assumptions of the rate
of testing: one test per second and one test per minute.
In the first case, testing is impractical for failure rates
under 10-7; in the latter, under 10-5. Note that this table
assumes that tests are carried out 24 hours per day,
seven days per week, and that no failures are
encountered during the test. Determining the expected
amount of calendar (elapsed) time for the test will be
longer if the assumptions are not valid. The times
given in the table are examples; if test cases require
more (or less) time, then the table can be adjusted. For
example, if a test case requires five minutes to execute,
then nearly six years will be required for a failure rate
of 10-5.

41

Table 5-1. Required Number of Test Cases to Achieve
Stated Levels of Failure Rate and Confidence

f c=.9 c=.99 c=.999

10-1 22 44 66

10-2 230 460 690

10-3 2,300 4,600 6,900

10-4 23,000 46,000 69,000

10-5 230,000 460,000 690,000

10-6 2,300,000 4,600,000 6,900,000

10-7 23M 46M 69M

10-8 230M 460M 690M

10-9 2,300M 4,600M 6,900M

10-10 23,000M 46,000M 69,000M

10-11 230,000M 460,000M 690,000M

Table 5-2. Expected Test Duration as a Function of Test Case Duration

Failure rate Number of test cases 1 test per second 1 test per minute

10-1 44 44 seconds 45 minutes

10-2 459 7.5 minutes 7.6 hours

10-3 4600 1.25 hours 3 days

10-4 46,000 13 hours 1 month

10-5 460,000 5.5 days 11 months

10-6 4,600,000 1.75 months 9 years

10-7 46M 1.5 years 90 years

10-8 460M 15 years 900 years

10-9 4,600M 150 years 9,000 years

10-10 46,000M 1,500 years 90,000 years

10-11 460,000M 15,000 years 900,000 years

2. Obtain the operational profile.

An operational profile is a statistical distribution
function which gives, for every point p in the input
space, the probability that p will be selected at any
arbitrary point in time. More formally, suppose the
inputs presented to the software object during actual
operation are v1, v2, ..., vn. Then the operational

profile gives, for each point p, the probability that vk =

p for each k, 1 ≤ k ≤ n (Musa 1992)12.

For example, suppose that a software object has only
three input values: low, medium, and high. An analysis
of the expected frequency of these three values shows
that ‘low’ will occur 70% of the time; ‘medium,’ 20%;

12 Some additional statistical assumptions discussed in the reference
are not listed here.

42

and ‘high,’ 10%. This is an operational profile for this
example.

3. Determine the test oracle.

This is a function which, given an input to the software
object under test and the results of running the test,
will determine whether the actual test result obtained is
correct. The test oracle must be able to make this
determination with very high confidence.

4. Create the test station.

A test station is a mechanism for creating, executing,
evaluating, and recording tests performed on the
software object and the results of the tests. It must be
able to run with minimal supervision for very long
periods of time. Typical test station components are
shown in Figure 5-1.

A brief description of each component of a test station
follows:

a. Input Generator. A means of generating input test
cases in such a way that the probability
distribution function of the test cases is equivalent
to the probability distribution function determined
by the operational profile.

b. Test Program. A means by which the software
object can be executed using the generated test
cases as input to produce test results as output. As
a general rule, the object must be placed in the
same initial state before each test is carried out.

c. Test Oracle. A means of determining the
correctness of the output produced by the software
object under test.

d. Test Database. A means of recording the test
input, test output, and correctness for future
analysis and evaluation.

5.4.3. Test Execution and Test Evaluation

The following actions are required to execute and
evaluate statistical testing.

1. Execute the tests. Carry out the test procedure
until the predetermined number of test cases have
been executed without failure. The number of test
cases which will be required can be determined
from Table 5-1.

2. Assess the tests. Evaluate the results to be sure that
the test was successfully executed, and provide
assurance of this fact. This may require a formal
certification.

5.5. Discussion of Statistical Testing

Statistical testing is the primary way to calculate a
failure rate for a software object. When the conditions
discussed above can be met, statistical testing can be
very effective. It can be used for nearly any type of
software object.

For example, suppose it is necessary to provide a
reliability number for a square root routine. It would be
reasonable to assume that the operational profile
function is the uniform distribution function, so that all
random numbers are equally likely to be used.
Generating a sequence of random numbers for this
distribution is easy, so the input generator is simply a
random-number generator. The test program merely
calls the square root routine. The oracle is simple—
check for a positive number, square the answer and
compare to the input number using previously
established error bounds. It should be possible to carry
out one test every millisecond or so, depending on the
speed of the computer being used. If the goal is a
failure rate of 10-8 with .99 confidence, Table 5-1
shows that about 460,000,000 test cases will be
required—this will take about 5.3 days.

Statistical testing will be much more difficult for a
software system such as a reactor protection system.
Here, the input points may consist of a series of values
from simulated sensors which occur over a period of
several minutes—and the timing may be critical. This
would mean that carrying out a sequence of tests will
require a considerable amount of time. Assuming one
test per minute (on average), attaining a failure rate of
10-4 at .99 confidence will require about a month of
testing. This is estimated as follows:

1. Table 5-1 states that approximately 46,000 test
cases are required to achieve a failure rate of 10-4

at .99 confidence level.

2. The assumption of one test case executing per
minute (on average) means that sixty test cases
can be executed in an hour. Assuming that the
tests are automated and run continuously 24 hours
a day, seven days a week, it follows that 10,080
test cases can be executed in a calendar week.

3. Hence, it will require (46,000)/(10,080) or
approximately 4.5 calendar weeks to execute the
required test cases to establish this statistical
failure rate at the specified confidence level.

Similarly, it can be shown that attaining a failure rate
of 10-5 will require nearly a year of testing.

43

Input Output

Correctness

Results
Database

Input
Generator

Test
Oracle

Test
Program

Software
Object

Figure 5-1. Typical Test Station Components for Statistical Testing

An accurate operational profile may be difficult to
obtain. One possible approach is to partition the input
space into subsets of inputs that occur in different
modes of operation, and test each of these individually,
assuming a uniform distribution function. For example,
one mode of operation could be “all operating
parameters well within bounds;” another could be
“some operating parameter is near a limit,” and so on.
If these operational modes can, in turn, be specified
accurately, statistical testing can be carried out for each
mode. (See Whittaker 1994 for an alternative
approach.)

There are some advantages to this approach. It is
presumably more important to know the reliability of
the software under off-normal and emergency

conditions than under normal operating conditions.
One might be willing to test for 10-4 failure rate under
normal conditions, but require 10-5 under near-
emergency and emergency conditions. If the latter
input space is sufficiently small, increased confidence
in the software could be obtained at reasonable cost.

However, constructing the test oracle and guaranteeing
its correctness becomes a serious problem. It is not
possible to carry out large numbers of tests and
evaluate the results using human labor because of the
time constraints and human error rates for this type of
task.

44

45

6. STRESS TESTING

6.1. Purpose of Stress Testing

Stress testing is a process of subjecting a system to
abnormal loads on resources in order to discover
whether the system can function outside anticipated
normal ranges, to determine the usage limits beyond
which the system will fail as a result of the overloaded
resource, and to gain information that will help to
characterize the behavior of a system when it is
operating near its usage limits. The process of
discovering “breaking points” also provides the
opportunity to examine recovery mechanisms and
procedures.

If a system can function adequately with loads outside
the anticipated real-life application domain levels, the
assumption is that it will perform properly with normal
loads (Perry 1988). Background testing (testing in the
presence of loads within normal ranges) should be
performed to help validate this assumption. A
background test verifies that the system will perform
adequately within the normal mix of loads and
resources and provides the basis with which to
compare stress test results.

Stress testing is particularly important for COTS
software items since those items may not have been
developed with the particular safety-related application
in mind. This type of testing provides an opportunity to
examine the COTS software performance with respect
to the intended application.

The qualities addressed by stress testing, summarized
in Table 1-2, are discussed below.

6.2. Benefits and Limitations of Stress
Testing

6.2.1. Benefits

Stress testing forces a system to operate in unusual
circumstances not typically created in other forms of
testing and, therefore, is complementary to other
elements of the overall testing effort. It is particularly
important for safety-related software since it is a
testing strategy that creates high-stress, off-normal
scenarios in which the software is likely to fail. For
reactor protection systems, these scenarios might be
related to sensor input streams of interrupt-type or
buffer loading signals or to output streams generated in
emergency situations. Stress testing uncovers
information about software faults and provides an
understanding of limits on system resources. The latter
is useful in validating the intended use of the COTS

item, in establishing system monitoring routines, and
in tuning the system for installed operations.

Stress testing provides information about robustness
and performance by creating scenarios in which
normal operating ranges are exceeded and examining
how performance degrades. Stress testing at the
boundaries of these ranges also allows one to confirm
that performance requirements have been met. The
actual failures encountered in stress testing may lead to
the discovery of software faults and provide
opportunities to examine the completeness of the
recovery mechanisms incorporated into the software.

6.2.2. Limitations

Stress testing must be performed in an actual or
simulated installed environment and requires complete
information about operating and user procedures.
Stress testing can be expensive because of manpower
costs or because of the need to develop automated
elements of the test station. In addition, specific
internal states can be difficult to reproduce, and root
causes of failures can be difficult to find.

6.3. Information Required to Perform
Stress Testing

Stress testing must be performed in an actual or
simulated production (installed) environment.
Therefore, complete information about this
environment must be available, including an
understanding of operating and user procedures. Since
stress testing must provide abnormal loads, there must
be a definition of the types of loads to be placed on the
system as well as an understanding of what the normal
operating ranges will be for each load. Typical load
types of interest are as follows (the first four being of
particular interest for reactor protection systems):

• High volumes and arrival rates of transactions

• Saturation of communications and processor
capacities

• Situations stressing internal table sizes

• Situations stressing internal sequencing or
scheduling operations

• Heavy use of disk storage space and swapping
capability

• Operating with a very large database size

• Many simultaneous users.

46

Finally, if available, design information is valuable in
order to understand how to design specific stress tests
that will focus on internals.

6.4. Methods of Performing Stress Testing

The stress tests must be planned, designed, created,
coordinated, executed, evaluated, and documented.

6.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for stress testing.

1. Determine the software qualities to be addressed
with stress testing. The primary quality of interest
for safety-related COTS software is robustness in
the intended role; however, availability,
completeness, correctness, and performance are
also addressed.

2. Determine the load situations under which the
software system is to be tested. For safety-related
COTS software, these will be determined based on
knowledge of the role that the COTS product will
play in the system and vendor-supplied
information regarding product functions and
performance. Information derived from the usage
experience of other users of the COTS software
item or from fault tree analyses of the system is
also valuable in this process.

3. Determine whether the stress testing environment
will be an actual or simulated production
environment.

4. Determine the resources required to carry out the
testing. Resources include budget, schedule,
personnel, equipment, test tools, test station, and
test data.

5. Determine the criteria to be used to decide how
much testing will be required. This is a stopping
criterion—how much testing is enough? For
example, “stress testing of a particular software
resource might continue until adequate
information has been gathered regarding all three
goals of stress testing.”

6.4.2. Test Design and Test Implementation

The following actions are required to design and
implement stress testing.

1. Establish the testing environment for the stress
tests.

In most cases, a simulated production environment will
be required. Since the results of stress testing will
reflect the performance of the software in the test
environment rather than the real-life environment, the

simulated production environment should be as close
as possible to the actual production environment.

2. Create procedures for executing the stress tests.

Since this testing will take place in an actual or
simulated production environment, the test procedures
should make use of system operating procedures and
usage procedures or user guides. The stress test
procedures specify how the system loads will be
generated, the roles of all participants, the sequences of
operations (scripts) each participant will perform, the
test cases to be performed, and how the test results will
be logged.

3. Create individual test cases.

Each test case should contain the following
information:

a. Test identification. Each test case must have a
unique identifier.

b. Purpose. Each test case should have a specific
reason for existing. Examples include verifying
the proper operation of a system function,
verifying response times, and verifying the
handling of exception conditions during situations
of high system loads.

c. Input data. The precise data required in order to
initiate the test case must be specified.

d. Initial state. The initial state for the test case is
essentially specified in the test procedures and
scripts; however, there may be initial state
information specific to a given test case.

e. Test results. The expected results of the test must
be known and specified. Expected performance
statistics, counts of operations, etc., should be
determined from the planned load and test case
input data.

f. Final state. In some cases, the final state is
important and must be specified as part of the test
case information.

4. Create the test station.

The test station is a mechanism for specifying and
generating loads as well as selecting, executing,
evaluating, and recording the results of other tests
carried out on the software. Note that, depending on
the goal of a particular stress (or background) test,
input may consist solely of transactions in the input
load or may be augmented by test cases from other
types of testing. Test station components (patterned
after Beizer 1984) are illustrated in Figure 6-1 and
include:

47

A
A
A
A
A

Results
Database

Input Output

Correctness

Load
Data

Input Load
Generation

Load
Scenarios

Test
Oracle

Software
Object

Data
Logger

Test Case
Selection

Test
Case

Test Case
Database

Load Data
Generator

Loading
Specifications

Figure 6-1. Typical Test Station Components

a. Load data generator. A means of accepting
specifications for the loading of resources and
generating scenarios needed for the input load
generator to produce the required load during the
stress test run.

b. Test case selection. A means of selecting, if
appropriate, additional test cases to be executed.
Test case information is typically kept in a file or
database, and the selection may simply consist of
“get next test case.”

c. Input load generation. A means of accepting input
data for loading and generating the desired system
loads with the desired statistical characteristics.

d. Test Oracle. A means of determining the
correctness of the output (of the optional test
cases) produced by the software object under test.

e. Data Logger. A means of logging pertinent
information about system performance during the
stress test.

f. Test evaluation. A means of analyzing the results
of the stress test, including specific test case
results as well as scanning software system output
for anomalies created during the stress test.

g. Results database. A means of recording the test
results for future analysis and evaluation.

6.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the test
results must be analyzed. The logged system outputs,
produced in response to the input load or any
additional test cases, must be examined to verify
correct operation of the system. This is done by
comparing inputs and outputs relating to specific test
cases or transactions to determine if information was

48

lost or improperly processed. In addition, the logged
output must be analyzed to determine if timing,
sequencing, counts, error recovery, etc. match what
was input to the system by the load generator and test
case selector. If appropriate, database integrity
checking routines should be run. If a particular load
causes the system to fail, the logged information is
used to search for the circumstances of the failure and
to quantify the load level at which the failure occurred.
These evaluations can be quite difficult to perform
since they can require the careful examination of
voluminous data.

The results of stress testing may indicate that the
system performs acceptably within the planned load
ranges of the tested resources. In this case, the stress
testing results provide operating information about
resource limits that can then be embedded into system
monitoring routines or used for system tuning
purposes.

The performance profile and the nature of faults
encountered must also be considered. The performance
information must be verified against the requirements
and constraints of the system in which the COTS
software will operate. The significance of the faults
discovered should be evaluated and, if appropriate, the
options for obtaining corrections might be pursued. If
the performance of the software is not within the
requirements of the application or if one or more
serious faults are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

6.5. Discussion of Stress Testing

Stress testing is a process of subjecting a system to
abnormal loads with the intention of breaking the
system. By investigating why the system breaks and at
what load level the system breaks, information is
gained about possible software faults, operating load
limits, system behavior near the load limits, and error
recovery behavior. Typical software faults discovered
are faults associated with sequencing, contention for
resources, scheduling priorities, error or time-out
recovery paths, and simultaneous activities. These
faults tend to be subtle and frequently indicate design
problems rather than simple coding mistakes (Beizer
1984).

For COTS software, there are a number of approaches
to identifying specific load situations to test. The role
of COTS software in the overall system must be
characterized with respect to functions provided,
performance requirements, and interfaces to other
elements of the system—essentially a black-box
characterization. Additional information can be added
based on any available vendor data regarding product
specification and target performance levels. If source
code is available, the source code inspection process

(see Section 2) could have, as one of its goals, a focus
on identifying structural properties that should be
stress tested. Information can also be gathered from
other users of the COTS software item regarding usage
experience and load ranges. This information might
suggest suspect areas or provide additional confidence
that some areas are robust. Finally, if fault tree analysis
techniques are applied to the overall system, any root
causes possibly relating to the COTS software role
must be examined to see if load-related failures might
be possible.

With respect to the task of diagnosing software faults
based on stress test results, it should be noted that the
exact reproduction of internal states resulting from
stress test scenarios is difficult, if not impossible. This
is because the simultaneous activities of test
participants and the various internal timing and
scheduling situations are usually not exactly
repeatable. Therefore, the process of identifying
software faults based on stress test results is not as
deterministic as it is for other types of test results
analysis. However, if the goal is to examine general
behavior at various load levels, the stored scenarios
can be re-run as needed. Discovered software failures
that are reproducible without active system loads can
be further investigated with other test techniques. It is
more difficult to diagnose software failures that occur
only under high system loads or that cannot be
reproduced in subsequent stress tests. For this reason,
it is important to have full knowledge of test inputs and
to log as much information as possible during the
stress test execution for subsequent analysis. For
COTS software items, knowledge of the experience of
other users and a characterization of their normal
operating loads is useful ancillary information for
analysis of test results.

Creating mechanisms for generating the required loads,
logging test data, and analyzing results is a difficult
task. For small systems with minimal real-time
requirements or in cases in which only general
information such as user response time is desired, it is
possible to do the data generation manually and to
create the system load via interactive user inputs
augmented by other system functions such as running
reports and performing intense data searches. Data
logging would be done manually or automatically
using existing logging features, and test results
analysis would be manual. Even though there might
not be a need for developing automated load
generators in these cases, there will still be a
significant effort to use and coordinate manpower and
system resources for stress testing.

For most situations, it is necessary to develop
automated means for generating the input loads,
logging data, and analyzing results. See Beizer 1984
for a detailed discussion of load generation techniques.

49

The load generation process comprises two parts,
which can be combined or separated depending on the
demands of the stress testing operations. First, the
information characterizing a particular load is used to
generate typical test data according to statistical
distributions of desired input parameters. Second, an
automated means for using this data to generate loads

in real time during the test must be created. Logging
facilities might already exist in the system platform; if
not, they have to be created. Finally, the analysis of
results will require specialized routines to organize and
summarize the data, scan the results for possible
anomalies, and compare system performance statistics
with those anticipated from the input load statistics.

50

51

7. REGRESSION TESTING

7.1. Purpose of Regression Testing

Regression testing consists of re-running a standard set
of test cases following the implementation of a set of
one or more changes to previously tested software. Its
purpose is to provide confidence that modifications
have not had unintended effects on the behavior of the
software. It is assumed that the appropriate testing
techniques (see the other sections of this report) have
been applied to test whether the modified software
elements perform as specified in the change
documentation. In addition to regression testing itself,
it is necessary to verify that all system documentation,
such as requirements, design, and operating
procedures, have been updated to reflect the software
modifications. Regression testing addresses the quality
of software correctness and, indirectly, the qualities
associated with the test strategies that are being re-
applied.

7.2. Benefits and Limitations of Regression
Testing

7.2.1. Benefits

In addition to the direct testing of software
modifications, regression testing is required to provide
assurance that, except for the modified portion, the
software performs in the same way that it did prior to
the changes. Since the regression testing process
repeats previous testing, no additional “start-up” costs
are associated with establishing test mechanisms. In
addition, since the regression testing effort is largely
the same for each software change, there is benefit in
combining changes into one release. For COTS
software, this is equivalent to determining when to
upgrade to a new release.

The primary software quality of interest in regression
testing is correctness since the goal is to verify that
new faults have not been inadvertently introduced into
the software. Since regression testing consists of re-
running test cases from appropriate test techniques, the
qualities associated with those techniques are also re-
examined during regression testing.

7.2.2. Limitations

There are significant maintenance costs for
configuration management of the test cases, test data,
and test procedures as well as for keeping the testing
environment(s) current. Regression testing will involve
re-running large numbers of test cases in a variety of
types of testing and will, therefore, be expensive to
perform.

7.3. Information Required to Perform
Regression Testing

Since regression testing is a re-use of existing test
cases,13 the information required to perform this
testing depends upon the specific types of test cases to
be re-run. This information is described in the sections
of this report dealing with the test types of interest. It is
essential that configuration control be maintained on
all test documentation and related test materials to
permit regression testing to be performed effectively
and efficiently.

7.4. Methods of Performing Regression
Testing

The regression tests must be planned, designed,
coordinated, executed, evaluated, and documented.

7.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for regression testing.

1. Establish and maintain the standard set of tests
(test cases, data, and procedures) to be repeated as
regression tests. For COTS software used in a
safety-related context, it is recommended that the
full set of functional and stress testing initially
conducted be repeated.

2. Determine what resources will be required in
order to carry out the testing. Resources include
budget, schedule, personnel, equipment, test tools,
test station(s), and test data. The test tools, test
station(s), and test data should already be in place
from previous testing activity, and should be
directly usable provided that configuration
management procedures have been continuously
applied to these items.

3. Determine the criteria to be used to decide how
much testing will be required. This is a stopping
criterion—how much testing is enough? For
example, “the regression testing process will
continue until the entire standard set of test cases
runs without incident.”

7.4.2. Test Design and Test Implementation

The following actions are required to design and
implement regression testing.

13As a system evolves, the suite of test cases used for regression
testing must also evolve.

52

1. Ensure that the testing environments used in
previous testing have been maintained and are
ready for regression testing.

2. Ensure that the modified software elements have
been tested according to the same testing plans
used on the original software.

3. Review the standard set of regression test cases,
data, and procedures to discover whether any have
been invalidated as a result of the desired
modifications. Update the test cases and
procedures as appropriate.

7.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the test
results analyzed. Since the modified software elements
have already been tested to verify correct operation,
the regression test results should indicate that the areas
of the COTS software thought to have been unaffected
by the modifications are indeed unaffected by the
changes. The results should exactly match the results
of previous, successful tests.

7.5. Discussion of Regression Testing

The primary focus of regression testing is to provide
assurance that implemented changes do not, in some
subtle way, ripple through the system and cause
unintended effects. In addition to software function
and performance, there must be a verification that
conventions, standards, access rules, etc., were adhered
to in the change implementation. One source of
problems occurring in software maintenance is that

undocumented assumptions made by the development
team are not carried over into the maintenance phase
(Hetzel 1984). For these reasons, it is recommended
that the full complement of functional and stress
testing activities originally performed be repeated to
test the modified safety-related software system. (It is
assumed that appropriate tests and analyses will
already have been run on the modified code.)
Depending on the role of the modified software
element and the criticality of its function (and of the
overall software system), it may be possible to justify a
reduced set of test cases for regression testing based on
a change impact assessment and knowledge of
potential fault consequences derived from a software
risk assessment. This requires a careful assessment of
the modified software element and its interfaces
(logical and data) to other parts of the system, as well
as a complete understanding of the likelihood and
magnitudes of potential loss.

The methods used for regression testing are the same
methods used for the various types of testing carried
out previously. Test plans, test cases, and test
procedures, as well as test stations and automated test
support mechanisms, already exist, and it is assumed
that they have been maintained under configuration
control for future use in regression testing. Whenever
modifications are made to the software object, it is
necessary to review the standard set of test cases (as
well as test data and test procedures) to ensure that
none have been invalidated by the modifications and to
update the set based on the specifications for the newly
modified object.

53

8. REFERENCES

Basili, Victor R. and Richard W. Selby, “Comparing the Effectiveness of Software Testing Strategies,” IEEE
Transactions on Software Engineering Vol. 12, No. 12 (December 1987), 1278–1296.

Beizer, Boris, Software System Testing and Quality Assurance, Van Nostrand Reinhold (1984).

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold (1990).

Charette, Robert N., Software Engineering Risk Analysis and Management, McGraw-Hill (1989).

Dyer, Michael, The Cleanroom Approach to Quality Software Development, John Wiley & Sons (1992).

Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development,” IBM Systems Journal,
Vol. 15, No. 3, 1976, 182–211.

Glass, Robert L., Building Quality Software, Prentice-Hall (1992).

Hamlet, Richard, “Random Testing,” in Encyclopedia of Software Engineering, John Wiley & Sons, 1994.

Hetzel, William, The Complete Guide to Software Testing, QED Information Sciences, Inc. (1984).

Howden, William E., “A Survey of Static Analysis Methods,” in Tutorial: Software Testing & Validation
Techniques, Institute of Electrical and Electronics Engineers, 1981.

Howden, William E., “A Survey of Dynamic Analysis Methods,” in Tutorial: Software Testing & Validation
Techniques, Institute of Electrical and Electronics Engineers, 1981.

Howden, William E., Functional Program Testing and Analysis; McGraw-Hill (1987).

Hurley, Richard B., Decision Tables in Software Engineering, Van Nostrand Reinhold, (1983).

IEEE 1012 Working Group, personal communication regarding the IV&V description under consideration for the
IEEE 1012 update.

IEEE 610.12. IEEE Standard Glossary of Software Engineering Terminology, Institute of Electrical and Electronics
Engineers, 1991.

IEEE 829. IEEE Standard for Software Test Documentation, Institute of Electrical and Electronics Engineers, 1983.

IEEE 1008. IEEE Standard for Software Unit Testing, Institute of Electrical and Electronics Engineers, 1986.

IEEE 1074. IEEE Standard for Developing Software Life Cycle Processes, Institute of Electrical and Electronics
Engineers, 1992.

Lawrence, J. Dennis, Software Reliability and Safety in Nuclear Reactor Protection Systems, NUREG/CR-6101,
Lawrence Livermore National Laboratory, Livermore, CA (1993).

Lawrence, J. Dennis and Preckshot, G. G., Design Factors for Safety-Critical Software, NUREG/CR-6294,
Lawrence Livermore National Laboratory, Livermore, CA (1994).

Marick, Brian, The Craft of Software Testing; Prentice-Hall (1995).

Miller, Edward and William E. Howden, Tutorial: Software Testing and Validation Techniques, Second Edition,
IEEE Computer Society Press (1981).

McCall, Jim A. et al., “Factors in Software Quality,” Concept and Definitions of Software Quality, General Electric
Company, 1977.

Musa, John D., “The Operational Profile in Software Reliability Engineering: An Overview,” Third Int’l Symp. on
Soft. Rel. Eng. (October 1992), 140–154.

Olender, Kurt M. and Leon J. Osterweil, “Cecil: A Sequencing Constraint Language for Automatic Static Analysis
Generation,” IEEE Transactions on Software Engineering, Vol. 16, No. 3, March 1990, 268–280.

Perry, William E., A Structured Approach to Systems Testing, QED Information Sciences (1988).

Pressman, Roger S., Software Engineering, A Practitioner’s Approach, McGraw-Hill, (1987).

Price, Source Code Static Analysis Tools Report, Software Technology Support Center, 1992.

Poore, J. H., Harlan D. Mills, and David Mutchler, “Planning and Certifying Software System Reliability,” IEEE
Software 10, 1 (January 1993), 88–99.

Preckshot, G. G. and Scott, J. A., Vendor Assessment and Software Plans, UCRL-ID-122243, Lawrence Livermore
National Laboratory, Livermore, CA (1995).

Whittaker, James A., and Michael G. Thomason, “A Markov chain model for statistical software testing,” IEEE
Transactions on Software Engineering, Vol. 20, No. 10 (October 1994), 812-824.

Yourdon, Edward, Structured Walkthroughs, Prentice-Hall (1989).

54

55

ANNEX: TAXONOMY OF SOFTWARE BUGS

This Annex* provides a taxonomy for program faults (bugs). Faults are categorized by a four-digit number, perhaps
with sub-numbers using the point system: e.g., “1234.5.6.” The “x” that appears is a place holder for possible future
filling in of numbers as the taxonomy is expanded. For example,

3xxx—structural bugs in the implemented software

32xx—processing bugs
322x—expression evaluation

3222—arithmetic expressions
3222.1—wrong operator

1xxx: FUNCTIONAL BUGS: REQUIREMENTS AND FEATURES: Bugs having to do with requirements as
specified or as implemented.

11xx: REQUIREMENTS INCORRECT: the requirement or a part of it is incorrect.
111x: Incorrect: requirement is wrong.
112x: Undesirable: requirement is correct as stated but it is not desirable.
113x: Not needed: requirement is not needed.

12xx: LOGIC: the requirement is illogical or unreasonable.
121x: Illogical: illogical, usually because of a self-contradiction which can be exposed by a logical

analysis of cases.
122x: Unreasonable: logical and consistent but unreasonable with respect to the environment and/or

budgetary and time constraints.
123x: Unachievable: requirement fundamentally impossible or cannot be achieved under existing

constraints.
124x: Inconsistent, incompatible: requirement is inconsistent with other requirements or with the

environment.
1242: Internal: the inconsistency is evident within the specified component.
1244: External: the inconsistency is with external (to the component) components or the environment.
1248: Configuration sensitivity: the incompatibility is with one or more configurations (hardware,

software, operating system) in which the component is expected to work.

13xx: COMPLETENESS: the requirement as specified is either ambiguous, incomplete, or overly specified.
131x: Incomplete: the specification is incomplete; cases, features, variations or attributes are not

specified and therefore not implemented.
132x: Missing, unspecified: the entire requirement is missing.
133x: Duplicated, overlapped: specified requirement totally or partially overlaps another requirement

either already implemented or specified elsewhere.
134x: Overly generalized: requirement as specified is correct and consistent but is overly generalized

(e.g., too powerful) for the application.
137x: Not downward compatible: requirement as specified will mean that objects created or

manipulated by prior versions can either not be processed by this version or will be incorrectly
processed.

138x: Insufficiently extendible: requirement as specified cannot be expanded in ways that are likely
to be needed—important hooks are left out of specification.

* This Annex is based on “Bug Taxonomy and Statistics,” Appendix, Software Testing Techniques, second edition, by Boris Beizer. Copyright 
1990 by Boris Beizer. Reprinted with permission of Van Nostrand Reinhold, New York.

56

14xx: VERIFIABILITY: specification bugs having to do with verifying that the requirement was correctly or
incorrectly implemented.

141x: Unverifiable: the requirement, if implemented, cannot be verified by any means or within
available time and budget. For example, it is possible to design a test, but the outcome of the test
cannot be verified as correct or incorrect.

142x: Untestable: it is not possible to design and/or execute tests that will verify the requirement.
Untestable is stronger than unverifiable.

15xx: PRESENTATION: bugs in the presentation or documentation of requirements. The requirements are
presumed to be correct, but the form in which they are presented is not. This can be important for test
design automation systems, which demand specific formats.

152x: Presentation, documentation: general presentation, documentation, format, media, etc.
153x: Standards: presentation violates standards for requirements.

16xx: REQUIREMENT CHANGES: requirements, whether or not correct, have been changed between the
time programming started and testing ended.
162x Features: requirement changes concerned with features.

1621: Feature added: a new feature has been added.
1632: Feature deleted: previously required feature deleted.
1633: Feature changed: significant changes to feature, other than changes in cases.

163x: Cases: cases within a feature have been changed. Feature itself is not significantly modified except
for cases.
1631: Cases added.
1632: Cases deleted.
1633: Cases changed: processing or treatment of specific case(s) changed.

164x: Domain changes: input data domain modified: e.g., boundary changes, closure, treatment.
165x: User messages and diagnostics: changes in text, content, or conditions under which user prompts,

warning, error messages, etc. are produced.
166x: Internal interfaces: direct interfaces (e.g., via data structures) have been changed.
167x: External interfaces: external interfaces, such as device drivers, protocols, etc. have been changed.
168x: Performance and timing: changes to performance requirements (e.g., throughput) and/or timings.

2xxx: FUNCTIONALITY AS IMPLEMENTED: requirement known or assumed to be correct, implementable,
and testable, but implement is wrong.

21xx: CORRECTNESS: having to do with the correctness of the implementation.
211x: Feature misunderstood, wrong: feature as implemented is not correct—not as specified.
218x: Feature interactions: feature is correctly implemented by itself, but has incorrect interactions with

other features, or specified or implied interaction is incorrectly handled.

22xx: COMPLETENESS, FEATURES: having to do with the completeness with which features are
implemented.
221x: Missing feature: an entire feature is missing.
222x: Unspecified feature: a feature not specified has been implemented.
223x: Duplicated, overlapped feature: feature as implemented supplicates or overlaps features

implemented by other parts of the software.

23xx: COMPLETENESS, CASES: having to do with the completeness of cases within features.
231x: Missing case.
232x: Extra case: cases that should not have been handled are handled.
233x: Duplicated, overlapped case: duplicated handling of cases or partial overlap with other cases.
234x: Extraneous output data: data not required are output

24xx: DOMAINS: processing case or feature depends on a combination of input values. A domain bug exists if
the wrong processing is executed for the selected input-value combination.

57

241x: Domain misunderstood, wrong: misunderstanding of the size, shape, boundaries, or other
characteristics of the specified input domain for the feature or case. Most bugs related to handling
extreme cases are domain bugs.

242x: Boundary locations: the values or expressions that define a domain boundary are wrong: e.g.,
“X>=6” instead of “X>=3.”

243x: Boundary closures: end points and boundaries of the domain are incorrectly associated with an
adjacent domain: e.g., “X>=0” instead of “X>0”.

244x: Boundary intersections: domain boundaries are defined by a relation between domain control
variables. That relation, as implemented, is incorrect: e.g., “IF X>0 AND Y>0...” instead of “IF X>0
OR Y>0...”.

25xx: USER MESSAGES AND DIAGNOSTICS: user prompt or printout or the form of communication is
incorrect. Processing is assumed to be correct: e.g., false warning, failure to warn, wrong message, spelling,
formats.

26xx: EXCEPTION CONDITIONS MISHANDLED: exception conditions such as illogical, resource
problems, failure modes, which require special handling, are not correctly handled or the wrong exception-
handling mechanisms are used.

3xxx: STUCTURAL BUGS: bugs related to the component’s structure: i.e., the code.

31xx: CONTROL FLOW AND SEQUENCING: bugs specifically related to the control flow of the program
or the order and extent to which things are done, as distinct from what is done.
311x: General structure: general bugs related to component structure.

3112: Unachievable path: a functionally meaningful processing path in the code for which there is no
combination of input values that will force the path to be executed. Do not confuse with
unreachable code. The code in question might be reached by some other path.

3114: Unreachable code: code for which there is no combination of input values that will cause that
code to be executed.

3116: Dead-end code: code segments that once entered cannot be exited, even though it was intended
that an exit be possible.

312x: Control logic and predicates: the path taken through a program is directed by control flow
predicates (e.g., Boolean expressions). This category addresses the implementation of such predicates.
3122: Duplicated logic: control logic that should appear only once is inadvertently duplicated in

whole or in part.
3124: Don’t care: improper handling of cases for which what is to be done does not matter either

because the case is impossible or because it really does not matter: e.g., incorrectly assuming that
the case is a don’t-care case, failure to do case validation, not invoking the correct exception
handler, improper logic simplification to take advantage of such cases.

3126: Illogicals: improper identification of, or processing of, illogical or impossible conditions. An
illogical is stronger than a don’t care. Illogicals usually mean that something bad has happened
and that recovery is needed. Examples of bugs include: illogical not really so, failure to recognize
illogical, invoking wrong handler, improper simplification of control logic to take advantage of the
case.

3128: Other control-flow predicate bugs: control-flow problems that can be directly attributed to the
incorrect formulation of a control flow predicate: e.g., “IF A>B THEN ...” instead of “IF A<B
THEN ...”.

313x: Case selection bug: simple bugs in case selections, such as improperly formulated case selection
expression. GOTO list, or bug in assigned GOTO.

314x: Loops and iteration: bugs having to do with the control of loops.
3141: Initial value: iteration value wrong: e.g., “FOR 13 TO 17 ...” instead of “FOR 1=8 TO 17.”
3142: Terminal value or condition: value, variable, or expression used to control loop termination is

incorrect: e.g., “FOR I = 1 TO 7 ...” instead of “FOR I = 1 TO 8.”
3143: Increment value: value, variable, or expression used to control loop increment value is

incorrect: e.g., “FOR I = 1 TO 7 STEP 2 ...” instead of “FOR I = 1 TO 7 STEP 5 ...”.

58

3144: Iteration variable processing: where end points and/or increments are controlled by values
calculated within the loop’s scope, a bug in such calculations.

3148: Exception exit condition: where specified values or conditions or relations between variables
force an abnormal exit to the loop, either incorrect processing of such conditions or incorrect exit
mechanism invoked.

315x: Control initialization and/or state: bugs having to do with how the program’s control flow is
initialized and changes of state that affect the control flow: e.g., switches.
3152: Control initialization: initializing to the wrong state or failure to initialize.
3154: Control state: for state-determined control flows, incorrect transition to a new state from the

current state: e.g., input condition X requires a transition to state B, given that the program is in
state A; instead, the transition is to state C. Most incorrect GOTOs are included in this category.

316x: Incorrect exception handling: any incorrect invocation of a control-flow exception handler not
previously categorized.

32xx: PROCESSING: bug related to processing under the assumption that the control flow is correct.
321x: Algorithmic, fundamental: inappropriate or incorrect algorithm selected, but implemented

correctly: e.g., using an incorrect approximation, using a shortcut string search algorithm that assumes
string characteristics that may not apply.

322x: Expression evaluation: bugs having to do with the way arithmetic, Boolean, string, and other
expressions are evaluated.
3222: Arithmetic: bugs related to evaluated of arithmetic expression.

3222.1: Operator: wrong arithmetic operator or function used.
3222.2: Parentheses: syntactically correct bug in placement of parentheses or other

arithmetic delimiters.
3222.3: Sign: bug in use of sign.

3224: Logical or Boolean, not control: bug in the manipulation or evaluation of Boolean expression
that are not (directly) part of control-flow predicates: e.g., using wrong mask, AND instead of OR,
incorrect simplification of Boolean function.

3226: String manipulation: bug in string manipulation.
3226.1: Beheading: the beginning of a string is cut off when it should not have been, or

not cut off when it should have been.
3226.2: Curtailing: as for beheading but for string end.
3226.3: Concatenation order: strings are concatenated in wrong order or concatenated

when they should not be.
 3326.3.1: Append instead of precede.
 3226.3.2: Precede instead of append.
3226.4: Inserting: having to do with the insertion of one string into another.
3226.5: Converting case: case conversion (upper to lower, say) is incorrect.
3226.6: Code conversion: string is converted to another code incorrectly or not

converted when it should be.
3226.7: Packing, unpacking: strings are incorrectly packed or unpacked.

3228: Symbolic, algebraic: bugs in symbolic processing of algebraic expressions.
323x: Initialization: bugs in initialization of variables, expressions, functions, etc. used in processing,

excluding initialization bugs associated with declarations and data statements and loop initialization.
324x: Cleanup: incorrect handling of cleanup of temporary data areas, registers, states, etc. associated with

processing.
325x: Precision, accuracy: insufficient or excessive precision, insufficient accuracy, and other bugs

related to number representation system used.
326x: Execution time: excessive (usually) execution time for processing component.

4xxx: DATA: bugs in the definition, structure, or use of data.

59

41xx: DATA DEFINITION, STRUCTURE, DECLARATION: bugs in this definition, structure, and
initialization of data: e.g., in DATA statements. This category applies whether the object is declared
statically in source code or created dynamically.
411x: Type: the data object type, as declared, is incorrect: e.g., integer instead of floating, short instead of

long, pointer instead of integer, array instead of scalar, incorrect user-defined type.
412x: Dimension: for arrays and other objects that have a dimension (e.g., arrays, records, files) by which

component objects can be indexed, a bug in the dimension, in the minimum or maximum dimensions,
or in redimensioning statements.

413x: Initial, default values: bugs in the assigned initial values of the object (e.g., in DATA statements),
selection of incorrect default values, or failure to supply a default value if needed.

414x: Duplication and aliases: bugs related to the incorrect duplication or failure to create a duplicated
object.
4142: Duplicated: duplicated definition of an object where allowed by the syntax.
4144: Aliases: object is known by one or more aliases but specified alias is incorrect: object not

aliased when it should have been.
415x: Scope: the scope, partition, or components to which the object applies is incorrectly specified.

4152: Local should be global: a locally defined object (e.g., within the scope of a specific component)
should have been specified more globally (e.g., in COMMON)

4154: Global should be local: the scope of an object is too global: it should have been declared more
locally.

4156: Global/local inconsistency or conflict: a syntactically acceptable conflict between a local
and/or global declaration of an object (e.g., incorrect COMMON).

416x: Static/dynamic resources: related to the declaration of static and dynamically allocated resources.
4162: Should be static resource: resource is defined as a dynamically allocated object but should

have been static (e.g., permanent).
4164: Should be dynamic resource: resource is defined as static but should have been declared as

dynamic.
4166: Insufficient resources, space: number of specified resources is insufficient or there is

insufficient space (e.g., main memory, cache, registers, disc) to hold the declared resources.
4168: Data overlay bug: data objects are to be overlaid but there is a bug in the specification of the

overlay areas.

42xx: DATA ACCESS AND HANDLING: having to do with access and manipulation of data objects that are
presumed to be correctly defined.
421x: Type: bugs having to do with the object type.

4212: Wrong type: object type is incorrect for required processing: e.g., multiplying two strings.
4314: Type transformation: object undergoes incorrect type transformation: e.g., integer to floating,

pointer to integer, specified type transformation is not allowed, required type transformation not
done. Note: type transformation bugs can exist in any language, whether or not it is strongly typed,
whether or not there are user-defined types.

4216: Scaling, units: scaling or units (semantic) associated with objects is incorrect, incorrectly
transformed or not transformed: e.g., FOOT-POUNDS to STONE-FURLONGS.

422x: Dimension: for dynamically variable dimensions of a dimensioned object, a bug in the dimension:
e.g., dynamic redimension of arrays, exceeding maximum file length, removing one or more than the
minimum number of records.

423x: Value: having to do with the value of data objects or parts thereof.
4232: Initialization: initialization or default value of object is incorrect. Not to be confused with

initialization and default bugs in declarations. This is a dynamic initialization bug.
4234: Constant value: incorrect constant value for an object: e.g., a constant in an expression.

424x: Duplication and aliases: bugs in dynamic (run time) duplication and aliasing of objects.
4242: Object already exists: Attempt to create an object that already exists.
4244: No such object: attempted reference to an object that does not exist.

60

426x: Resources: having to do with dynamically allocated resources and resource pools, in whatever
memory media they exist: main, cache, disc, bulk RAM. Included are queue blocks, control blocks,
buffer blocks, heaps, files.
4262: No such resource: reference resource does not exist.
4264: Wrong resource type: wrong resource type reference.

428x: Access: having to do with access of objects as distinct from the manipulation of objects. In this
context, accesses include read, write, modify, and (in some instances) create and destroy.
4281: Wrong object accessed: incorrect object accessed: e.g., “X:=ABC33” instead of “X:=ABD33”.
4282: Access rights violation: access rights are controlled by attributes associated with the caller and

the object. For example, some callers can only read the object, others can read and modify.
Violations of object access rights are included in this category whether or not a formal access
rights mechanism exits: that is, access rights could be specified by programming conventions
rather than by software.

4283: Data-flow anomaly: data-flow anomalies involve the sequence of accesses to an object: e.g.,
reading or initializing an object before it has been created, or creating and than not using.

4284: Interlock bug: where objects are in simultaneous use by more than one caller, interlocks and
synchronization mechanisms may be used to ensure that all data are current and changed by only
one caller at a time. These are not bugs in the interlock or synchronization mechanism but in the
use of that mechanism.

4285: Saving or protecting bug: application requires that the object be saved or otherwise protected
in different program states or, alternatively, not protected. These bugs are related to the incorrect
usage of such protection mechanisms or procedures.

4286: Restoration bug: application requires that a previously saved object be restored prior to
processing: e.g., POP the stack, restore registers after interrupt. This category includes bugs in the
incorrect restoration of data objects and not bugs in the implementation of the restoration of data
objects and not bugs in the implementation of the restoration mechanism.

4287: Access mode, direct/indirect: object is accessed by wrong means: e.g., direct access of an
object for which indirect access is required: call by value instead of name, or vice versa: indexed
instead of sequential, or vice versa.

4288: Object boundary or structure: access to object is partly correct, but the object structure and its
boundaries are handled incorrectly: e.g., fetching 8 characters of a string instead of 7, mishandling
word boundaries, getting too much or too little of an object.

5xxx: IMPLEMENTATION: bugs having to do with the implementation of the software. Some of these, such as
standards and documentation, may not affect the actual workings of the software. They are included in the bug
taxonomy because of their impact on maintenance.

51xx: CODING AND TYPOGRAPHICAL: bugs that can be clearly attributed to simple coding, as well as
typographical bugs. Classification of a bug into this category is subjective. If a programmer believed that
the correct variable, say, was “ABCD” instead of “ABCE”, than it would be classified as a 4281 bug
(wrong object accessed). Conversely, if E was changed to D because of a typewriting bug, then it belongs
here.
511x: Coding wild card, typographical: all bugs that can be reasonably attributed to typing and other

typographical bugs.
512x: Instruction, construct misunderstood: all bugs that can be reasonably attributed to a

misunderstanding of an instruction’s operation or HOL statement’s action.

52xx: STANDARDS VIOLATION: bugs having to do with violating or misunderstanding the applicable
programming standards and conventions. The software is assumed to work properly.
521x: Structure violations: violations concerning control-flow structure, organization of the software, etc.

5212: Control flow: violations of control-flow structure conventions: e.g., excessive IF-THEN-ELSE
nesting, not using CASE statements where required, not following dictated processing order,
jumping into or out of loops, jumping into or out of decisions.

5214: Complexity: violation of maximum (usually) or minimum (rare) complexity guidelines as
measured by some specified complexity metric: e.g., too many lines of code in module, cyclomatic
complexity greater than 200, excessive Halstead length, too many tokens.

61

5215: Call nesting depth: violations of component (e.g., subroutine, subprogram, function) maximum
nesting depth, or insufficient depth where dictated.

5216: Modularity and partition: Modularity and partition rules not followed: e.g., minimum and
maximum size, object scope, functionally dictated partitions.

5217: Call nesting depth: violations of component (e.g., subroutine, subprogram, function) maximum
nesting depth, or insufficient depth where dictated.

522x: Data definition, declarations: the form and/or location of data object declaration is not according to
standards.

523x: Data access: violations of conventions governing how data objects of different kinds are to be
accessed, wrong kind of object used: e.g., not using field-access macros, direct access instead of
indirect, absolute reference instead of symbolic, access via register, etc.

524x: Calling and invoking: bugs in the manner in which other processing components are called,
invoked, or communicated with: e.g., a direct subroutine call that should be indirect, violation of call
and return sequence conventions.

526x: Mnemonics, label conventions: violations of the rules by which names are assigned to objects: e.g.,
program labels, subroutine and program names, data object names, file names.

527x: Format: violations of conventions governing the overall format and appearance of the source code:
indentation rules, pagination, headers, ID block, special markers.

528x: Comments: violations of conventions governing the use, placement, density, and format of
comments. The content of comments is covered by 53xx, documentation.

53xx: DOCUMENTATION: bugs in the documentation associated with the code or the content of comments
contained in the code.
531x: Incorrect: documentation statement is wrong.
532x: Inconsistent: documentation statement is inconsistent with itself or with other statements.
533x: Incomprehensible: documentation cannot be understood by a qualified reader.
534x: Incomplete: documentation is correct but important facts are missing.
535x: Missing: major parts of documentation are missing.

6xxx: INTEGRATION: bugs having to do with the integration of, and interfaces between, components. The
components themselves are assumed to be correct.

61xx: INTERNAL INTERFACES: bugs related to the interfaces between communicating components with
the program under test. The components are assumed to have passed their component level tests. In this
context, direct or indirect transfer of data or control information via a memory object such as tables,
dynamically allocated resources, or files, constitute an internal interface.
611x: Component invocation: bugs having to do with how software components are invoked. In this

sense, a “component” can be a subroutine, function, macro, program, program segment, or any other
sensible processing component. Note the use of “invoke” rather than “call” because there may be no
actual call as such: e.g., a task order placed on a processing queue is an invocation in our sense, though
(typically) not a call.
6111: No such component: invoked component does not exist.
6112: Wrong component: incorrect component invoked.

612x: Interface parameter, invocation: having to do with the parameter of the invocation, their number,
order, type, location, values, etc.
6121: Wrong parameter: parameter of the invocation are incorrectly specified.
6122: Parameter type: incorrect invocation parameter type used.
6124: Parameter structure: structural details of parameter type used.
6125: Parameter value: value (numerical, Boolean, string) of the parameter is wrong.
6126: Parameter sequence: parameters of the invocation sequence in the wrong order, too many

parameters, too few parameters.
613x: Component invocation return: having to do with the interpretation of parameters provided by the

invoked component on return to the invoking component or on release of control to some other
component. In this context, a record, a subroutine return sequence, or a file can qualify for this

62

category of bug. Note that the bugs included here are not bugs in the component that created the return
data but in the receiving component’s subsequent manipulation and interpretation of that data.
6131: Parameter identity: wrong return parameter accessed.
6132: Parameter type: wrong return parameter type used: that is, the component using the return data

interprets a return parameter incorrectly as to type.
6134: Parameter structure: return parameter structure misinterpreted.
6136: Return sequence: sequence assumed for return parameter is incorrect.

614x: Initialization, state: invoked component not initialized or initialized to the wrong state or with
incorrect data.

615x: Invocation in wrong place: the place or state in the invoking component at which the invoked
component was invoked is wrong.

616x: Duplicate or spurious invocation: component should not have been invoked or has been invoked
more often than necessary.

62xx: EXTERNAL INTERFACES AND TIMING: having to do with external interfaces, such as I/O devices
and/or drivers, or other software not operating under the same control structure. Data passage by files or
messages qualify for this bug category.
621x: Interrupts: bugs related to incorrect interrupt handling or setting up for interrupts: e.g., wrong

handler invoked, failure to block or unblock interrupts.
622x: Devices and drivers: incorrect interface with devices or device drivers or incorrect interpretation of

return status data.
6222: Device, driver, initialization or state: incorrect initialization of device or driver, failure to

initialize, setting device to the wrong state.
6224: Device, driver, command bug: bug in the command issued to a device or driver.
6226: Device, driver, return/status misinterpretation: return status data from device or driver

misinterpreted or ignored.
623x: I/O timing or throughput: bugs having to do with timing and data rates for external devices such

as: not meeting specified timing requirements (too long or too short), forcing too much throughput, not
accepting incoming data rates.

7xxx: SYSTEM AND SOFTWARE ARCHITECTURE: bugs that are not attributable to a component or to the
interface between components but affect the entire software system or stem from architectural errors in the
system.

71xx: OS bug: bugs related to the use of operating system facilities. Not to be confused with bugs in the
operating system itself.
711x: Invocation, command: erroneous command given to operating system or OS facility incorrectly

invoked.
712x: Return data, status misinterpretation: data returned from operating system or status information

ignored or misinterpreted.
714x: Space: required memory (cache, disc, RAM) resource not available or requested in the wrong way.

72xx: Software architecture: architecture problems not elsewhere defined.
721x: Interlocks and semaphores: bugs in the use of interlock mechanisms and interprocess

communication facilities. Not to be confused with bugs in these mechanisms themselves: e.g., failure
to lock, failure to unlock, failure to set or reset semaphore, duplicate locking.

722x: Priority: bugs related to task priority: e.g., priority too low or too high, priority selected not allowed,
priority conflicts.

723x: Transaction-flow control: where the path taken by a transaction through the system is controlled by
an implicit or explicit transaction flow-control mechanism, these are bugs related to the definition of
such flows. Note that all components and their interfaces could be correct but this kind of bug could
still exist.

724x: Resource management and control: bugs related to the management of dynamically allocated
shared resource objects: e.g., not returning a buffer block after use, not getting an object, failure to
clean up an object after use, getting wrong kind of object, returning object to wrong pool.

63

725x: Recursive calls: bugs in the use of recursive invocation of software components or incorrect
recursive invocation.

726x: Reentrance: bugs related to reentrance of program components: e.g., a reentrant component that
should not be, a reentrant call that should be nonreentrant.

73xx: RECOVERY ACCOUNTABILITY: bugs related to the recovery of objects after the failure and to the
accountability for objects despite failures.

74xx: PERFORMANCE: bugs related to the throughput-delay behavior of software under the assumption that
all other aspects are correct.
741x: Throughput inadequate.
742x: Response time, delay: response time to incoming events too long at specified load or too short

(rare), delay between outgoing events too long or too short.
743x: Insufficient users: maximum specified number of simultaneous users or task cannot be

accommodated at specified transaction delays.
748x: Performance parasites: any bug whose primary or only symptom is a performance degradation:

e.g., the harmless but needless repetition of operations, fetching and returning more dynamic resources
than needed.

75xx: INCORRECT DIAGNOSTIC, EXCEPTION: diagnostic or error message incorrect or misleading.
Exception handler invoked is wrong.

76xx: PARTITIONS AND OVERLAYS: memory or virtual memory is incorrectly partitioned, overlay to
wrong area, overlay or partition conflicts.

77xx: SYSGEN OR ENVIRONMENT: wrong operating system version, incorrect system generation, or other
host environment problem.

8xxx: TEST DEFINTION OR EXCUTION BUGS: bugs in the definition, design, execution of tests or the data
used in tests. These are as important as “real” bugs.

81xx: DESIGN BUGS: bugs in the design of tests.
811x: Requirements misunderstood: test and component are mismatched because test designer did not

understand requirements.
812x: Incorrect outcome predicted: predicted outcome of test does not match required or actual outcome.
813x: Incorrect path predicted: outcome is correct but was achieved by the wrong predicted path. The

test is only coincidentally correct.
814x: Test initialization: specified initial conditions for test are wrong.
815x: Test data structure or value: data objects used in tests or their values are wrong.
816x: Sequencing bug: the sequence in which tests are to be executed, relative to other tests or to test

initialization, is wrong.
817x: Configuration: the hardware and/or software configuration and/or environment specified for the test

is wrong.
818x: Verification method criteria: the method by which the outcome will be verified is incorrect or

impossible.

82xx: EXECUTION BUGS: bugs in the execution of tests as contrasted with bugs in their design.
821x: Initialization: tested component not initialized to the right state or values.
822x: Keystroke or command: simple keystroke or button hit error.
823x: Database: database used to support the test was wrong.
824x: Configuration: configuration and/or environment specified for the test was not used during the run.
828x: Verification act: the act of verifying the outcome was incorrectly executed.

83xx: TEST DOCUMENTATION: documentation of test case or verification criteria is incorrect or
misleading.

84xx: TEST CASE COMPLETENESS: cases required to achieve specified coverage criteria are missing.

64

65

GLOSSARY

Definitions for many of the technical terms used in the report are given below. An abbreviated indication of the
reference from which the definition was taken is provided in square brackets.

610 IEEE 610-12

882C MIL-STD-882C

1028 IEEE 1028

1058 IEEE 1058

1074 IEEE 1074

RADC RADC 1977

Acceptability—A measure of how closely the computer program meets the true needs of the user [RADC].

Accessibility—the extent that software facilitates the selective use of its components [RADC].

Augmentability—the extent that software easily accommodates expansions in data storage requirements or
component computational functions [RADC].

Accountability—the extent that code usage can be measured [RADC].

Accuracy—(1) A qualitative assessment of correctness, or freedom from error [610]. (2) A quantitative measure of
the magnitude of error [610]. (3) A measure of the quality of freedom from error, degree of exactness possessed
by an approximation or measurement [RADC].

Activity—(1) A group of related tasks [IEEE 1074]. (2) A major unit of work to be completed in achieving the
objectives of a software project. An activity has precise starting and ending dates, incorporates a set of tasks to
be completed, consumes resources and results in work products [1058].

Adaptability—The ease with which a system or component can be modified for use in applications or environments
other than those for which it was specifically designed [610].

Availability—(1) The degree to which a system or component is operational and accessible when required for use
[610]. (2) The fraction of total time during which the system can support critical functions [RADC]. (3) The
probability that a system is operating satisfactorily at any point in time, when used under stated conditions
[RADC].

Clarity—(1) The ease with which the program (and its documentation) can be understood by humans [RADC]. (2)
The extent to which a document contains enough information for a reader to determine its objectives,
assumptions, constraints, inputs, outputs, components, and status [RADC].

Completeness—(1) The attributes of software that provide full implementation of the functions required [RADC].
(2) The extent to which software fulfills overall mission satisfaction [RADC]. (3) The extent that all of the
software’s parts are present and each of its parts are fully developed [RADC].

Consistency—The degree of uniformity, standardization, and freedom from contradiction among the documents or
parts of a system or component [610].

Convertibility—The degree of success anticipated in readying people, machines, and procedures to support the
system [RADC].

Cost—Includes not only development cost, but also the costs of maintenance, training, documentation, etc., on the
entire life cycle of the program [RADC].

Correctness—(1) The degree to which a system or component is free from faults in its specification, design and
implementation [610]. (2) The degree to which software, documentation, or other items meet specified
requirements [610]. (3) The degree to which software, documentation or other items meet user needs and
expectations, whether specified or not [610].

Extendibility—The ease with which a system or component can be modified to increase its storage or functional
capacity [610].

66

Generality—a measure of the scope of the functions that a program performs [RADC].

Inexpensiveness—see Cost.

Integrity—(1) The degree to which a system or component prevents unauthorized access to, or modification of,
computer programs or data [610]. (2) A measure of the degree of protection the computer program offers
against unauthorized access and loss due to controllable events [RADC]. (3) The ability of software to prevent
purposeful or accidental damage to the data or software [RADC].

Interface—(1) A shared boundary across which information is passed [610]. (2) A hardware or software component
that connects two or more components for the purpose of passing information from one to the other [610].

Interoperability—how quickly and easily one software system can be coupled to another [RADC].

Maintainability—(1) The ease with which a software system or component can be modified to correct faults,
improve performance or other attributes, or adapt to a changed environment [610]. (2) The probability that a
failed system will be restored to operable conditions within a specified time [RADC].

Manageability—the degree to which a system lends itself to efficient administration of its components [RADC].

Modifiability—(1) A measure of the cost of changing or extending a program [RADC]. (2) The extent to which a
program facilitates the incorporation of changes, once the nature of the desired change has been determined
[RADC].

Modularity—(1) The degree to which a system or computer program is composed of discrete components such that
a change to one component has minimal impact on other components [610]. (2) The ability to combine arbitrary
program modules into larger modules without knowledge of the construction of the modules [RADC]. (3) A
formal way of dividing a program into a number of sub-units each having a well defined function and
relationship to the rest of the program [RADC].

Non-complexity—see Simplicity.

Performance—(1) The degree to which a system or component accomplishes its designated functions within given
constraints, such as speed, accuracy, or memory usage [610]. (2) The effectiveness with which resources of the
host system are utilized toward meeting the objective of the software system [RADC].

Portability—The ease with which a system or component can be transferred from one hardware or software
environment to another [610].

Precision—(1) The degree of exactness or discrimination with which a quantity is stated [610]. (2) The degree to
which calculated results reflect theoretical values [RADC].

Reliability—(1) The ability of a system or component to perform its required functions under stated conditions for a
specified period of time [610]. (2) The probability that a software system will operate without failure for at least
a given period of time when used under stated conditions [RADC]. (3) The probability that a software fault does
not occur during a specified time interval (or specified number of software operational cycles) which causes
deviation from required output by more than specified tolerances, in a specific environment [RADC].

Reparability—The probability that a failed system will be restored to operable condition within a specified active
repair time when maintenance is done under specified conditions [RADC].

Requirement—(1) A condition or capability needed by a user to solve a problem or achieve an objective [610]. (2) A
condition or capability that must be met or possessed by a system or system component to satisfy a contract,
standard, specification or other formally imposed documents [610].

Reusability—The degree to which a software module or other work product can be used in more than one computer
program or software system [610].

Review—An evaluation of software elements or project status to ascertain discrepancies from planned results and to
recommend improvement [1028].

Robustness—(1) The degree to which a system or component can function correctly in the presence of invalid inputs
or stressful environmental conditions [610]. (2) The quality of a program that determines its ability to continue
to perform despite some violation of the assumptions in its specification [RADC].

Safety—Freedom from those conditions that can cause death, injury, occupational illness or damage to or loss of
equipment or property, or damage to the environment [882C].

Security—(1) A measure of the probability that one system user can accidentally or intentionally reference or
destroy data that is the property of another user or interfere with the operation of the system [RADC]. (2) The
extent to which access to software, data and facilities can be controlled [RADC].

67

Self-Descriptiveness—The degree to which a system or component contains enough information to explain its
objectives and properties [610].

Serviceability—The degree of ease or difficulty with which a system can be repaired [RADC].

Simplicity—The degree to which a system or component has a design and implementation that is straightforward
and easy to understand [610].

Software products—(1) The complete set of computer programs, procedures and possibly associated documentation
and data designated for delivery to a user [610]. (2) Any of the individual items in (1) [610].

Structuredness—(1) The ability to combine arbitrary program modules into larger modules without knowledge of
the construction of the modules [RADC]. (2) The extent to which a system possesses a definite pattern of
organization of its independent parts [RADC]. (3) A formal way of dividing a program into a number of sub-
units each having a well defined function and relationship to the rest of the program [RADC].

Task—The smallest unit of work subject to management accountability. A task is a well-defined work assignment
for one or more project members. [1074]

Testability—(1) The degree to which a requirement is stated in terms that permit establishment of test criteria and
performance of tests to determine whether those criteria have been met [610]. (2) The degree to which a system
or component facilitates the establishment of test criteria and the performance of tests to determine whether
those criteria have been met [610].

Understandability—(1) The extent to which the purpose of the product is clear to the evaluator [RADC]. (2) The
ease with which an implementation can be understood [RADC].

Uniformity—a module should be usable uniformly [RADC].

Usability—(1) The ease with which a user can learn to operate, prepare inputs for, and interpret outputs of a system
or component [610]. (2) The ease of operation from the human viewpoint, covering both human engineering
and ease of transition from current operation [RADC].

User Friendliness—the degree of ease of use of a computer system, device, program, or document. See User
Friendly in [610].

Validation—The process of evaluating a system or component during or at the end of the development process to
determine whether it satisfies specified requirements [610].

Validity—The degree to which software implements the user’s specifications [RADC].

Verification—The process of evaluating a system or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase [610].

Verification and Validation—The process of determining whether the requirements for a system or component are
complete and correct, the products of each development phase fulfill the requirements or conditions imposed by
the previous phase, and the final system or component complies with specified requirements [610].

